ANNALES
DES
SCIENCES NATURELLES.

SECONDE SÉRIE.

TOME X.
ANNÉES
DE
SCIENCES STATISTIQUES

IMPRIMÉ CHEZ PAUL RENOUARD,
RUE GARANCIÈRE, 5.
ANNALES
DES
SCIENCES NATURELLES
COMPRENANT
LA ZOOLOGIE, LA BOTANIQUE,
L'ANATOMIE ET LA PHYSIOLOGIE COMPARÉES DES DEUX RÈGnes;
ET L'HISTOIRE DES CORPS ORGANISÉS FOSSILES;
RÉDIGÉES
POUR LA ZOOLOGIE
PAR MM. AUDOUIN ET MILNE EDWARDS,
ET POUR LA BOTANIQUE
PAR MM. AD. BRONGNIART ET GUILLEMIN.

Seconde Série.
TOME DIXIÈME. — ZOOLOGIE.

PARIS.
CROCHARD & C°, LIBRAIRES-ÉDITEURS,
1838.
I. Observations sur les Eponges et en particulier sur la Spongille ou Eponge d'eau douce,

Par F. Dujardin.

Après que l'étude des Rhizopodes et des Amibes m'eut mis sur la voie de l'observation des mouvements très lents, et, en quelque sorte, micrométriques dans les organismes inférieurs, je m'efforçai de pénétrer, d'après cette donnée, le mystère de l'organisation des Eponges ; mais, bien que j'en eusse vu assez pour mon entière conviction, relativement à la nature animale de ces êtres, je sentais que ce n'était pas assez pour déterminer aussi la conviction des naturalistes qui ne seraient pas, comme moi, arrivés à la connaissance de ce fait par une foule d'intermédiaires. Mes premières observations sur ce sujet sont du mois de septembre 1835. Je voyais alors, dans la Cliona celata, cette singuliè re spongiaire occupant, dans des pierres calcaires, des trous qu'elle n'a point creusés, mais qui sont dus à une sabelle trouvée souvent dans les mêmes pierres ; je voyais, dis-je, avec les spicules en forme d'épingles, des globules irréguliers
d'une substance glutineuse contractile, qui, placés sous le micro-
croscope, à l'abri de tout dérangement et dessinés vingt fois de
suite, à cinq minutes d'intervalle, montraient vingt aspects diffé-
rents. La *Spongia paniceae* et plusieurs espèces distinctes,
formant des plaques rougâtres à la base des *Fucus*, ou des
masses irrégulières qui empâtent des *halymenia*, et pourvues
de spicules calcaires, me fournirent aussi, par le déchire-
ment, des globules de substance glutineuse, qui changeaient
de forme sous le microscope, ou, tout au moins, montraient
des changements intérieurs : il en était de même aussi pour les
globules glutineux, que je trouvais, en déchirant la *Spongilla*
*lacustris*, dont les spicules sont siliceuses. Mais des résultats
bien plus surprenants, trop surprenants peut-être, m'étaient don-
nés par une production charnue, blanchâtre, demi transpa-
rente, un peu gelatineuse, résistant à la pression et formant
des plaques à la base des *Laminaria palmata*, sur les côtes
du Calvados. J'avais pris d'abord cette production pour une des
Ascidies composées, si communes dans le même lieu ; mais, en
l'examinant avec soin, je n'y pus trouver aucune trace du tissu,
ni de cristaux calcaires ou de spicules : je n'y vis absolument
rien autre chose que des globules charnus, irréguliers et granu-
leux, de \(\frac{1}{2}\) millimètre environ, qui, au bout de quelque temps,
éttaient des prolongements assez déliés, de \(\frac{1}{2}\) millimètre
tout au plus, et finissaient par être entourés de filaments ex-
tensibles, changeant lentement de forme (fig. 5). Cette obser-
vation, faite d'abord en septembre, répétée en octobre, ne
pouvait me laisser de doute sur la nature animale de cette pro-
duction et sur son affinité avec les Eponges. J'avais sous les yeux
de ces rubans charnus, formés par les œufs des Doris et des
autres Mollusques nus : j'étudiais en même temps un grand
nombre d'Ascidies composées : les termes de comparaison ne
me manquaient donc pas pour bien distinguer la nouvelle spon-
giaire, et mon opinion s'est trouvée confirmée à mesure que
plus tard j'ai davantage examiné les Spongilles. Il est peut-être
prématuré d'imposer une dénomination à une substance qui pré-
rente si peu de caractères zoologiques; cependant, comme toutes
les spongiaires sont dans ce cas, et que leur classification ré-
clame une réforme complète, je proposerai, en attendant, de nommer notre nouveau type *halisarque* (*halisarca*).

Depuis cette époque, ayant examiné à plusieurs reprises les Spongilles, je vis chaque fois plus distinctement les mouvements que j'avais aperçus. Mon microscope recevait incessamment des perfectionnements qui me rendaient plus sûr de mes observations. Déjà, au mois de mai 1837, je vis clairement les parcelles glutineuses, détachées des Spongilles de l'étang de Meudon, se mouvoir sur le porte-objet du microscope, en émettant des expansions arrondies et des prolongements plus ou moins effilés, comme les Amibes; je vis aussi quelques-unes de ces parcelles se mouvoir d'une autre manière, en agitant des filaments très longs d'une ténuité extrême. J'avouerai que cette dernière circonstance m'empêcha seule de publier alors mon observation, parce que je me croyais si peu sûr de revoir à volonté ces filaments, que je n'osais annoncer l'existence d'un fait que je n'aurais pu démontrer.

Des Spongilles, recueillies dans la Seine, au mois d'octobre suivant, me montrèrent encore les mêmes phénomènes, et surtout, plus clairement encore les filaments flagelliformes; mais, comme l'eau commençait à s'altérer par la putréfaction, je conçus des doutes sur l'existence réelle de ces filaments dans les Spongilles bien fraîches, je crus qu'il pouvait y avoir eu la production de monades à filaments ou tout au moins altération de l'Eponge. Je résolus donc d'attendre au printemps pour étudier de nouveau les Spongilles, que j'étais certain de trouver à l'état naissant sur les étuis des larves de Frigane dans l'étang de Meudon. Il faut savoir avec quelle rapidité les Eponges corrompent l'eau des flacons, pour concevoir combien de difficultés j'ai rencontrées, pour les conserver vivantes pendant cinq ou six jours: aussi ne puis-je m'empêcher d'être surpris, en voyant M. Gervais annoncer qu'il a fait revivre, en les replaçant dans l'eau, des Spongilles déjà desséchées. Bien des fois il m'est arrivé de voir toutes mes Spongilles mortes avant vingt-quatre heures, et par conséquent de perdre ainsi l'occasion de les observer. Je n'ai bien réussi enfin à les conserver qu'en rapportant seulement deux ou trois étuis de friganes, chargés de Spongilles naissantes
dans chaque flacon rempli d'eau, avec beaucoup d'herbes aquatiques, et en les plaçant chez moi dans des vases peu profonds, car déjà, dans l'étang où elles vivent, elles ont choisi leur site d'habitation sur les étuis des larves qui les ramènent toujours près de la surface.

Ces jeunes Spongilles sont d'un beau vert, et leur surface est plucheuse. Ce n'est qu'à l'arrière-saison qu'elles sont ramifiées. Un fragment, enlevé avec la pointe d'un scalpel et placé sous le microscope de l'eau entre deux lames de verre, laisse voir, avec les spicules, des groupes plus ou moins irréguliers de matière glutineuse vivante, farcie de très petits grains verts dans les parties les plus épaisses, et diaphanes près des bords d'où l'on voit sortir, au bout d'un certain temps de repos des expansions très diaphanes contractiles, de forme variable, comme celles des Amibes. Un grand nombre de parcelles arrondies, de \( \frac{1}{10} \) à \( \frac{1}{100} \) millimètre environ (fig. 2 \( a, b, c \)), se voient en même temps dans le liquide, qu'ils traversent, en rampant sur la plaque de verre, au moyen de leurs expansions successivement développées, puis retirées et remplacées par d'autres. J'ai vu à une de ces parcelles jusqu'à six expansions arrondies sur son contour. Leur forme change assez promptement; et, à une minute d'intervalle, les expansions ont déjà été remplacées par d'autres, surtout si la température est assez élevée, car le froid ralentit considérablement ces mouvements.

Dans le liquide aussi se voient des masses irrégulières, formées par le groupement des mêmes parcelles vivantes. Ces masses, si elles sont trop volumineuses, ne changent pas de place; mais, sur leur contour, on voit bien clairement se former et disparaître successivement les mêmes expansions arrondies, tellement diaphanes, qu'on ne les aperçoit qu'en faisant naître, par le mode d'éclairage, des ombres sur leur contour. Quelquefois aussi, quand le mouvement est plus vif, les expansions s'allongent bien davantage et deviennent effilées, digitées (fig. 4), comme celles de certaines Amibes, ce qui empêche de penser que ces expansions effilées résultent de l'étirement de la masse glutineuse, fixée en un point sur le verre, c'est que leur prolongement successif se fait précisément dans le sens du mouve-
ment indiqué sur la figure par une petite flèche (r). Dans ce cas,
d’ailleurs, le mouvement étant plus considérable, on distingue
le transport et le reflux des particules contenus dans la sub-
stance glutineuse diaphane, comme on le voit dans les Rhizop-
podes.

Dans ces diverses parcelles vivantes, on voit des granules
colorés en vert au printemps, grises ou jaunâtres à l’arrière-
saison, et que je ne puis regarder comme des organes impor-
tants, ou comme des ovules de l’Eponge ; ils ont le même aspect,
les mêmes dimensions que ceux qui colorent les infusoires, et
je serais bien tenté de leur attribuer la même origine. Je suis
d’autant plus fondé à penser ainsi, que j’ai vu les Amibes, ordi-
nairement incolores, contenir des granules rougeâtres après que
dans le flacon d’infusions il se fût développé sur les parois une
substance rouge par l’effet de la putréfaction.

C’est ce seul fait des expansions contractiles et des mou-
vemens de reptation que j’annonçais à l’Académie des Sciences,
le 13 mai de cette année, comme démontrant suffisamment la
nature animale des Eponges ; j’étais, en effet, certain de pouvoir
rendre témoins de ce même fait les naturalistes, qui voudraient
bien le vérifier. J’avais bien encore revu les filaments flagelli-
formes, mais j’avais besoin de voir ce fait constaté par d’autres
observateurs, pour l’annoncer avec confiance : c’est ce que je
fis, le 18 mai, à la Société Philomatique, après que MM. Turpin
et Milne Edwards eurent vu, comme moi, les filaments agités
sur le contour de certains fragments (fig. 3), qui, dans ce cas,
n’étant point en repos, ne peuvent également ramper sur la
lame de verre, au moyen de leurs expansions.

On pouvait objecter que ces filaments appartaient à des
infusoires étrangers à l’Eponge et logés accidentellement dans
ses interstices ; cependant, comme j’avais vu constamment la
même chose sur des parcelles détachées de la surface, je ne
pouvais conserver de doute. Ainsi donc, comme je n’ai pu les
voir en place, puisque l’emploi d’un grossissement suffisant
exclut la possibilité de voir de pareils détails dans la masse de
l’éponge, je ne crois fondé à admettre que cette masse est formée
de parcelles amorphes, analogues aux Amibes, s’appuyant sur
les spicules ou sur le squelette, quel qu'il soit, de l'éponge, et changeant de forme, en émettant des prolongements dans différents sens, pour présenter leurs diverses parties au contact du liquide et s'accoître par suite de l'absorption ayant lieu à leur surface. De ces parcelles les plus extérieures sont, en outre, munies de longs filaments flagelliformes, comme les Monades, les Gonium, les Volvox, etc., pour déterminer à la surface le déplacement de l'eau et par suite les courants dans les oscules, d'où résulte un contact plus multiplié de la partie vivante avec le liquide, qui lui fournit des matériaux d'assimilation.

Le squelette de l'éponge est toujours un produit de sécrétion, et jamais, comme on l'a cru d'après une observation superficielle, un résultat de la cristallisation, comme ce qu'on voit chez les végétaux. Ce squelette présente trois modifications principales : 1° il est formé par l'entrelacement de fibres cornées pleines et non tubulées, analogues aux arbuscules du Volvox vegetans, dont je parlerai tout-à-l'heure ; 2° ou bien il n'est formé que de spicules fusiformes ou diversement soudées, de nature calcaire ou siliceuse ; 3° ou enfin il est formé de spicules enveloppées dans des fibres cornées, résultant de la formation de couches successives, déposées autour de ces spicules, comme dans une espèce rameuse, que j'ai observée et que je crois être la Spongia ramosa. J'ai représenté, dans la figure 1 de la planche 1 ; les principales formes de spicules que j'ai observées dans la spongille, en réunissant dans un même fragment idéal les formes les plus communes avec celles qui sont véritablement accidentelles. Les spicules les plus communes (a) sont lisses et fusiformes, quelquefois un peu courbées en arc, longues de \(\frac{1}{4}\) millimètre et épaisses de \(\frac{1}{50}\) à \(\frac{1}{60}\) millimètre. On distingue dans leur épaisseur des couches successives, et dans plusieurs on aperçoit au centre l'apparence du canal longitudinal ; d'autres, qu'on voit assez souvent, sont noueuses (b), soit au milieu, soit à l'extrémité ; d'autres (c) présentent des inflexions brusques ou des rameaux latéraux ; j'ai vu quelquefois aussi des petites cavités à l'intérieur ; enfin une dernière espèce de spicules six ou huit fois plus petites, est remarquable par les épines nombreuses dont elle est hérissée. On ne peut donc réellement
voir dans les spicules des cristaux même irréguliers, tandis que, pour le dire en passant, les petites concrétions étoilées qu'on trouve dans l'enveloppe commune des ascidies composées, sont des petits groupes de cristaux de carbonate de chaux, dans lesquels on reconnaît au moins la forme d'un rhomboèdre aigu.

Il me manque trop de choses encore pour que j'aie la prétention de donner ici un travail tant soit peu complet sur les éponges ; j'ai voulu seulement faire connaître des faits nouveaux dont l'observation devra être suivie et répétée sur les espèces marines. Je crois donc pouvoir me dispenser de donner ici un historique complet des travaux publiés sur le même sujet, je me bornerai à rappeler sommairement que M. Raspail a prétendu démontrer que les spicules ont une forme cristalline bien déterminée, que ce sont des prismes hexagones terminés par des pyramides très aiguës, d'où il a voulu former, pour ces prétendus cristaux, le nom de quartz hypéroxide. Plusieurs observateurs, tels que MM. Gray, Dutrochet, Linck et Gervais en ont voulu faire des végétaux. Ce dernier a même annoncé, en 1835, que les Spongilles desséchées peuvent reprendre toute leur vitalité, si on les replace dans l'eau : il a considéré comme des graines analogues à celles des végétaux inférieurs, comme des sporanges, les œufs qu'on trouve à l'arrière-saison dans la spongille. M. Dutrochet, en 1828, publia ses observations, qui dataient déjà de plusieurs années : il avait observé la Spongille à la simple loupe, et avait vu des courans se produire par les ouvertures de la surface ; mais il n'avait vu aucun signe d'irritabilité : il attribue ces courans à l'absorption qui se fait par toute la surface et qui gonfle la membrane extérieure : or, tout en admettant l'existence de cette membrane, il cite un fait d'agglutination de deux fragments, qui semble la contredire. M. Dutrochet rapporte qu'un fragment de Spongille, rempli de corps oviformes jaunes, ayant été conservé durant tout l'hiver avec de l'eau renouvelée, parut se décomposer et ne laisser que les fibres (les spicules) et les corps oviformes ; ensuite, au printemps, il vit cette production renaître, pour ainsi dire, reprendre sa couleur verte et s'accroître, et, durant cet accroissement, les corps oviformes se flétrir et finir par ne plus offrir qu'une coque aplatie, entière-
ment vide. Comme l'eau du vase était très pure, M. Dutrochet en conclut que l'accroissement s'est opéré aux dépens de la substance organique contenue dans les corps oviformes, qui sont, dit-il, des espèces de tubercules, des réservoirs de matière nutritive, pour servir au développement du végétal et à sa reproduction au printemps. Il se fonde, en outre, pour regarder la Spongille comme un végétal, sur sa couleur verte, sur son mode d'accroissement à la manière des ulves, et sur ce qu'elle ne contient point de polypes ni de cavités alimentaires; enfin sur ce qu'elle se nourrit exactement comme les végétaux, au moyen de l'absorption de l'eau, chargée de substances nutritives.

On voit que tous les arguments de M. Dutrochet reposent sur des définitions anciennes de l'animal, et que des observations faites avec des instruments plus puissants ne pouvaient manquer de les contredire en partie.

Du reste, M. Dutrochet, qui refuse d'admettre la contractilité dans les éponges, explique tous leurs changemens de forme par le mouvement des molécules, probablement vésiculaires, suivant lui, qui composent le tissu de la membrane extérieure. Ces changemens, dit-il, sont dus à un mouvement de transport des globules élémentaires d'un lieu dans le lieu voisin. Ces globules, ajoute-t-il, se meuvent les uns sur les autres, sans quitter leur adhérence par une sorte de glissement, et cela par l'effet d'une force inconnue, qui appartient au tissu vivant. Plus loin il dit encore: « Le glissement spontané des globules élémentaires les uns sur les autres est donc ici un fait démontré, et ce fait est de la plus haute importance en physiologie. C'est une action vitale nouvelle qui joue certainement un des principaux rôles dans le phénomène de l'accroissement en longueur des végétaux ». Je n'ai aucunement la pensée de combattre de telles déductions, et, si je m'y arrête plus long-temps que n'aurait comporté le cadre de mon travail, c'est parce que, informé que M. Dutrochet avait réclamé auprès des commissaires de l'Académie à ce sujet, j'ai voulu montrer combien mes observations sont différentes des siennes.

Parmi les travaux des naturalistes qui ont cru à l'animalité de
l’Eponge, je citerai seulement ceux plus récents de M. Grant (1825) qui a bien vu les courans dans les Eponges, mais qui n’a pu reconnaître aucun signe de contractilité ni aucun organe destiné à produire les courans; enfin les recherches de MM. Audouin et Milne Edwards, qui, en 1828, ont confirmé les observations de M. Grant, et de plus ont vu distinctement, dans les Thétyes, genre si voisin des Eponges, les courans se ralentir et les oscules se contracter lentement jusqu’à se fermer quand on irrite l’animal ou quand on le retire de l’eau.

II. Sur le Volvox végétant de Müller (Anthophysa Bory).

Par M. F. Dujardin.

Les observations qui précèdent me déterminent à publier ici quelques détails sur le Volvox vegetans de Müller. Cette singulière production est très commune dans la Seine, surtout à la fin de l’été. Si l’on place dans un flacon des conserves ou d’autres petites plantes recueillies sous les pierres submergées dans les mois d’août, de septembre et d’octobre, on aperçoit, à l’aide d’une simple loupe, sur les parois du flacon, après quelques jours, de petits arbuscules microscopiques brunâtres, qui se sont développés en place; car ils sont un produit de sécrétion pour les infusoirs qui terminent en groupe chaque petit rameau. Ces arbuscules, enlevés avec une plume taillée en cuiller, et transportés sur le porte-objet du microscope, paraissent formés d’une substance cornée, qui se durcit et se colore peu-à-peu; car la base des tiges est plus brute et plus solide, tandis que les rameaux sont de plus en plus transparens jusqu’à l’extrémité, qui est incolore et presque diaphane et plus molle. C’est là que sont fixés les infusoirs, groupés en rosace ou comme les carpelles d’une
framboise ou d'une mûre. Ces infusoires sont très petits, ovoïdes ou pyriformes, presque diaphanes, et paraissent d’abord de simples corpuscules glutineux, sans organes extérieurs; mais en regardant avec plus d’attention et en faisant naître convenablement des ombres sur le contour, on reconnaît que chaque corpuscule est muni d’un long filament flagelliforme, continuuellement agité d’un mouvement ondulatoire comme celui des monades.

Les tiges et les rameaux des arbuscules sont presque partout d’un même diamètre, à moins que plusieurs ne se soient soudés parallèlement, ce qui les fait alors paraître fasciculés: ils sont rugueux ou irrégulièrement granuleux: on serait quelquefois tenté de croire que ce sont des tubes creux; mais il paraît beaucoup plus probable que ce sont des tiges pleines, sécrétées successivement par le groupe d’infusoires, auxquels ils servent de support, et bisurqués ou divisés irrégulièrement là où le groupe d’infusoires, trop nombreux, se partage en deux, mais jamais véritablement dichotomes, comme l’a supposé mal-à-propos M. Bory de Saint-Vincent. J’ai cru aussi voir quelquefois des anastomoses; j’ai même représenté dans la figure ci-jointe (pl. 1, fig. 6 a) une de ces anastomoses apparentes; mais je n’ai pas une entière certitude sur cet objet.

En même temps que les arbuscules complets, on voit souvent aussi, dans le champ du microscope, des rameaux privés du groupe terminal d’infusoires, ou bien de ces mêmes groupes déta- chés, qui se meuvent en tournant dans le liquide et ressemblent alors à certains monadaires, tels que les Uvella (Monas uva et Volvox uva de Müller), qu’on trouve toujours ainsi réunis en groupes. C’est au moyen des filaments flagelliformes dont sont munis chacun des infusoires partiels, que la masse se meut en tourbillonnant dans le liquide, et, en les observant pendant quelque temps, on peut voir aussi ces petites masses se désaggréger. Chaque infusoire se meut isolément alors, en agitant son filament et en changeant de forme, tantôt plus court et presque globuleux; tantôt allongé, pyriforme, avec un ou deux renflements, dont l’antérieur, toujours plus gros, est oblique-ment tronqué.
Müller, le premier (*Animalcula infusoria*, p. 22), a décrit cette espèce d'infusoire. Il s'exprime ainsi : "Des flocons rameux opaques, invisibles à l'œil nu, dont les rameaux diaphanes à l'extrémité sont terminées par des rosaces formées de corpuscules très petits, ovoïdes, transparens". Mais, dans sa phrase caractéristique, il dit à tort que les rameaux sont simples et dichotomes. Il avait pensé d'abord que c'était une verticelle microscopique ; puis, dit-il, n'ayant point aperçu de mouvements dans les rosaces, il crut plus convenable de la ranger parmi les moisissures ; mais une étude persévérante lui fit découvrir le mouvement des rosaces sur les rameaux ; puis enfin leur séparation et leur mouvement de rotation dans le liquide lui causèrent une grande admiration (*admirationem non levem injeicerunt*), le déterminèrent à la placer parmi les Volvocés, en lui donnant un nom spécifique, exprimant leur ressemblance avec une petite plante.

M. Bory de Saint-Vincent n'ajouta aucun fait à leur histoire ; mais, préoccupé de la création de son nouveau règne psychodiare, il crut avoir trouvé dans le *Volvox vegetans* un des types de ce règne, et le nomma *Anthophysa dichotoma*. « C'est,dit-il (*Encyclopédie méthodique*, Zoophytes, t. 11), bien évidemment une petite plante confervoïde jusqu'à l'instant où l'extrémité de ses rameaux vient à produire des glomerules de petits corps transparens, qui ne sont eux-mêmes que des Zoocarpes, c'est-à-dire les séminules vivantes d'êtres dont la condition fut purement végétale jusqu'à l'émission de ces séminules. On voit par là que M. Bory a supposé que les rosaces ne paraissent qu'à une certaine époque, à l'extrémité des rameaux d'un arbuscule vivant par lui-même, tandis que c'est le contraire qui a lieu. Les rosaces préexistent, plus ou moins considérables, et donnent naissance aux arbuscules, par une sorte de sécrétion analogue à celle des Polypes qui habitent des tubes cornés. Tous les rameaux qu'on voit dépourvus de rosaces le sont par suite de la séparation de ces dernières, soit qu'elles soient mûres, soit qu'un accident les ait détachées M. Bory, d'ailleurs, reconnaissait la parfaite analogie des rosaces détachées de son *Anthophysa* avec les *Uvella*, que pourtant il consent à laisser dans le règne animal, et il
ajoute avec raison que les rosaces de l'Anthophysa se dissolvent en zoocarpes isolés et agissans, en tout semblables à des monades ; mais il faut remarquer que les monades pour M. Bory étaient encore dans ses derniers ouvrages sur ce sujet, ainsi que tous les gymnodes, des êtres très simples de forme parfaitement déterminée et invariable, où l'on ne reconnaît aucun organe, ni cirrhes vibratiles, ni même la moindre apparence de poils ou de cils quelconques.

M. Ehrenberg (1832), qui pourtant le note comme une des espèces qu'il a observées lui-même, range le Volvox vegetans dans son genre Epistylis, formé avec les vorticelles les plus parfaites, celles dont le pédicule est raide, non contractile, et qui se rapprochent davantage par là des polypes à polypier tubuleux corné. M. de Blainville se borne à dire, dans son Actinologie, qu'il croit s'être assuré que le Volvox vegetans n'est formé que de Volvoces ordinaires agglomérés par accident à l'extrémité de plantules.

Voilà donc bien des opinions contradictoires sur ce sujet ; mais heureusement que cette production très commune pourra être facilement soumise à l'observation désormais avec des instruments qui ne permettront pas de conserver de doute sur sa vraie structure, non plus que sur celle des Gonium, des Monades, du Volvox globator, etc. On demeurerait convaincu alors que des animalcules monadaires, aussi simples que les parcelles vivantes des Eponges et pourvues d'un filament flagelliforme, peuvent s'agréger en groupes nombreux et sécréter en commun un support corné, composé de fibres rameuses, analogues à la charpente des Eponges fibreuses.
III. *Sur des Monades à filament multiple.*

Par M. F. Dujardin.

Il est malheureusement si vrai que le microscope, avec tous les perfectionnements qu'il a reçus, ne peut amplifier avec avantage plus de cinq cents fois le diamètre, et nous avons tant de motifs d'espérer que prochainement cet instrument aura acquis une puissance nouvelle, que l'on est tenté d'ajourner toute publication sur des objets à la veille peut-être d'être beaucoup mieux connus; cependant il convient aussi de signaler aux observateurs les nouveaux détails d'organisation que nous montre le microscope à mesure qu'il reçoit quelque amélioration partielle, soit dans la confection des lentilles, soit dans le centrage et la disposition de ses diverses parties, soit enfin, ce qui n'est pas moins important, dans l'emploi de la lumière destinée à éclairer l'objet. C'est pour cela, et pour me rendre aux avis de quelques personnes, qui ont bien voulu voir avec moi d'abord, pour le voir seules ensuite, le filament flagelliforme, dont j'avais annoncé l'existence dans certaines espèces de Monades; c'est, dis-je, pour cela que je publie ces notes isolées, que j'ai recueillies avec beaucoup d'autres, devant servir à une histoire des infusoirs.

Depuis plusieurs années, j'ai entrepris, contradictoirement avec les travaux renommés d'un célèbre micrographe de Berlin, de prouver que l'organisation des infusoirs est réellement fort simple et n'a rien de commun avec celle des animaux supérieurs. Cette tâche était d'autant plus difficile, que l'opinion de M. Ehrenberg est appuyée sur le mérite incontestable de cet observateur comme zoologiste, et que mes propres travaux, connus de fort peu de personnes, n'avaient pu encore mériter une entière confiance pour mes opinions. Cependant les faits que j'avais successivement annoncés prouvaient que mes moyens...
d’observation étaient au moins égaux à ceux dont pouvait disposer M. Ehrenberg, et cet habile observateur lui-même ayant modifié successivement son opinion sur plusieurs points essentiels, comme l’organisation des Monades, celle des Englena, etc., on était naturellement conduit à conclure que le fait principal sur lequel repose toute sa classification des infusoires polygastriques, avait été observé par lui à une époque où ses instruments étaient fort inférieurs à ceux que nous possédons aujourd’hui. Or, je le répète, aujourd’hui même que je vois et que j’ai eu l’avantage de pouvoir montrer à plusieurs observateurs français ou étrangers des détails qui avaient échappé aux autres micrographes, je ne vois pas plus qu’aucun autre naturaliste de Paris les prétendus estomacs multiples appendus en grappe à un intestin central. Je puis ajouter aussi que j’ai eu la satisfaction de me voir d’accord sur la signification des vacuoles intérieures (prétendus estomacs) et sur les filaments flagelliformes, avec les naturalistes de Paris, dont l’opinion a le plus de prix pour moi. En présence d’une classification unique et basée sur la disposition et le nombre des estomacs, et sur la position de la bouche dans les infusoires, il n’était bien difficile, sans l’attaquer par sa base, de présenter des observations diamétralement opposées sur l’organisation des infusoires. J’ai donc dû chercher à combattre par des faits la nouvelle théorie, préparant ainsi les matériaux d’une classification rationnelle.

Pour quiconque aura examiné légèrement des Monades avec un microscope médiocre ou même ordinaire, ces infusoires sont simplement des corpuscules arrondis ou oblongs, sans organes extérieurs. Pour les partisans de M. Ehrenberg les Monades sont des infusoires polygastriques anentérés, c’est-à-dire pourvus de plusieurs estomacs, appendus comme des petits cœcums autour d’une cavité buccale, ayant une forme constante et non variable, une bouche ciliée ou nue, c’est ainsi, du moins, que ces infusoires sont caractérisés dans la classification publiée en 1832 ; car depuis il a reconnu que, au lieu de cils vibratiles, les monadaires ont une ou plusieurs trompes filiformes à la partie antérieure, et il leur a attribué un organe glanduleux, qu’il présume être un testicule. Mais, pour celui
qui cherche avec persévérance à pénétrer les mystères du monde microscopique, les Monades sont des animaux formés d'une masse glutineuse arrondie ou oblongue, irrégulièrement tuberculeuse, privée de tégument et susceptibles de changer de forme, en s'agglutinant au support et en s'étirant en fil. Souvent, à l'intérieur; on voit des vacuoles remplies d'eau et conséquemment réfractant moins fortement la lumière que la substance charnue environnante, et s'ouvrant en un point quelconque de la surface, sans avoir d'autre destination probable que de multiplier les surfaces de contact du liquide et du corps de l'animal. Souvent aussi se voient à l'intérieur des corpuscules, les uns produits de sécrétion, les autres en apparence contenus comme des corps étrangers, et des parties plus opaques, qu'on ne peut rationnellement considérer comme des organes génitaux, ainsi que l'a fait M. Ehrenberg. Du corps de la Monade partent un ou plusieurs filaments d'une ténuité extrême, égalant au moins deux ou trois fois le diamètre du corps et vivement agités d'un mouvement ondulatoire; de ces filaments, les uns paraissent constans et sont dirigés en avant, les autres dirigés dans un sens quelconque, sont formés évidemment par l'étirement de la masse, qui s'est agglutinée par un point quelconque à un corps étranger ou au support. De là résultent des assemblages singuliers de Monades, quand ces animaux, s'étant soudés par le contact, sont encore retenus par la partie étirée en fil. Les filaments accidentels, ordinairement un peu plus gros que les autres, se meuivent de la même manière, quoique moins vivement; les uns et les autres sont susceptibles de s'agglutiner sur le support, et je ne vois aucun motif plausible, pour en faire des trompes, comme le veut M. Ehrenberg. J'avais même dit, en décrivant le Diselmis viridis, que je regardais leur multiplicité comme un argument sans réplique contre une telle signification; cependant je vois par le dernier mémoire de ce savant observateur, qu'il est disposé à admettre autant de trompes que de filaments.

J'avais cru avoir le premier observé les filaments flagelliformes locomoteurs (prétendues trompes) des infusoirs; car je ne connaissais de M. Ehrenberg, que ses premiers mémoires, dans
lesquels il attribue aux Monades et aux Euglena un cercle de cils autour de la bouche ; mais je dois reconnaître que la date de son dernier mémoire sur ce sujet (1835-1836) est antérieure à celle de mes observations, quoique nous ayons vu d'une manière un peu différente et interprétée tout autrement que nous voyions. Il est bien sûr que, quand on cherche la vérité, de quelque point qu'on parte, on doit arriver au même but plus tôt ou plus tard; et je vois avec plaisir que le célèbre micrographe de Berlin sent la nécessité de faire entrer dans la classification des monadaires la considération des filaments flagelliformes plus ou moins nombreux. Incontestablement ce sera beaucoup mieux que la distinction précédemment établie par lui de la bouche droite ou oblique, dirigée en avant ou dans divers sens. En attachant à ce caractère l'importance relative qu'il mérite, on ne pourra s'empêcher de convenir que les filaments flagelliformes ne sont point des trompes.

L'infusoire, dont je donne la figure (pl. 1, fig. 7 a-b), et que je propose de nommer Hexamita, pour indiquer la présence de ces six filaments, est un de ceux qui rendront plus difficile la signification que leur attribue M. Ehrenberg. J'ai trouvé constamment cet infusoire dans l'eau où des Spongilles commençaient à se décomposer au bout de deux ou plusieurs jours, sans que pourtant l'eau fût entièrement gâtée; car d'autres animaux, des larves d'insectes, des entomostracés, etc., y vivaient encore. Il est long de douze à seize millièmes de millimètre, ovale, oblong, deux fois moins épais que large, arrondi en avant, où il porte quatre filaments très ténus qui partent de différents points du bord, et terminé en arrière par deux prolongements coniques, portant chacun un filament très long, également mince et agité aussi vivement que les quatre antérieurs. Entre ces deux prolongements s'en trouve quelquefois un plus petit, qui ne porte pas de filament. Le corps de cet infusoire est très flexible et change fréquemment de forme, en s'allongeant ou s'élargissant un peu. La substance paraît homogène. Je n'y ai point vu de granules étrangers; mais souvent elle est creusée de vacuoles en nombre variable, et sa surface est irrégulièrement bosselée. Comme j'ai retrouvé ce même infusoire, toujours le même, à trois reprises
différentes le 30 mars, le 12 avril et le 10 mai, dans les mêmes circonstances, je crois pouvoir le regarder comme un type bien caractérisé: or, comme je le répète, il me paraît impossible de regarder ses filamens comme des trompes, et je n'y puis voir que des organes locomoteurs.

---

Sur les zoospermes de la Salamandre aquatique:

Par M. F. Dujardin.

Pendant long-temps encore l'organisation des Zoospermes sera enveloppée d'un voile non moins impénétrable que celui qui nous dérobe la connaissance du rôle qu'ils sont appelés à remplir. Les travaux publiés en Allemagne et en France, depuis quelques années, auront, je crois, réfuté pour toujours l'opinion, qui en voulait faire des animaux distincts ou des êtres parasites, sorte d'entozoaires microscopiques. Dans les observations que j'ai déjà publiées, je me suis efforcé de prouver qu'ils ne sont autre chose qu'un produit vivant, une dérivation des organismes qui les ont fournis. Tout en montrant moi-même dans certains zoospermes des détails de structure qui avaient échappé aux autres micrographes, je suis resté convaincu que leur organisation intérieure est fort simple, et je crois bien d'ailleurs qu'il ne se trouverait personne aujourd'hui pour supposer dans ces corpuscles si petits, comme autrefois Leeuwenhoek, des muscles, des nerfs et des vaisseaux, enfin une organisation non moins complexe que celle des animaux supérieurs; mais, comme je l'ai dit ailleurs, en parlant des infusoirs pour leur attribuer une organisation extrêmement simple, la question de la vitalité chez les zoospermes n'en est ni plus ni moins facile à résoudre; nous ne pouvons pas mieux expliquer la contractilité et la faculté de locomotion dans un filamen supposé homogène ou dans une petite masse de sub-
stance glitineuse, que si nous accordions à ce filament et à cette masse des fibres musculaires, des nerfs, des vaisseaux invisibles; car, si petits que nous supposions ces organes, ils devront, en dernière analyse, se composer de fibres simples ou de petites parties homogènes contractiles par elles-mêmes. En soutenant donc cette simplicité d'organisation des Zoospermes, j'ai voulu m'en tenir simplement aux faits que nos sens, aidés des moyens optiques, nous permettent d'apprécier, sans vouloir rien admettre en plus ou en moins pour le besoin de la démonstration.

Tout en poursuivant, dans l'observation des Zoospermes, les recherches des faits destinés à jeter plus de lumière sur ce sujet intéressant, je n'ai pas été médiocrement surpris de reconnaître dans les Zoospermes de la Salamandre aquatique des détails de structure tout-à-fait inattendus et des indices d'une organisation beaucoup plus complexe. Il n'y avait pas à la vérité dans cette observation des motifs pour revenir à l'idée que ce peuvent être des animaux proprement dits; mais on pouvait y voir une grave difficulté pour admettre que ce sont de simples dérivations des organismes qui leur donnent naissance; cependant ce que je savais de l'extrême ténuité du filament locomoteur des Monades, des Euglena, etc.; les phénomènes que j'avais observés depuis long-temps sur les Zoospermes des Poissons, des Côphalopodes, de la Tettigonia et de plusieurs autres insectes, m'ont rendu en partie concevable la singulièr structure que j'avais sous les yeux, sans pourtant me l'expliquer entièrement. J'aurais bien désiré trouver des analogies plus ou moins rapprochées dans les Zoospermes des animaux, placés dans les classifications auprès des Salamandres; mais je n'ai rien vu dans les Lézards, dans les Crapauds ni dans les Grenouilles, qui se rapprochât tant soit peu de la forme nouvellement révélée par le microscope. Ce fait, que j'ai annoncé à l'Académie des Sciences, le 26 mars dernier, et sur lequel je donne ici plus de développemens, restera donc isolé quant à présent, et sera venu compliquer le problème déjà si difficile des Zoospermes, tout en fournissant une donnée nouvelle sur la manifestation de la vie.
En publiant mon observation la première fois, j'avais bien lieu de la considérer comme entièrement neuve; car le journal de M. Froriep, contenant la lettre de M. de Siebold, en date du 29 mai 1837, n'était point encore arrivé à la bibliothèque du Jardin-des-Plantes, la seule à Paris où les naturalistes puissent prendre connaissance des nouvelles publications scientifiques. D'un autre côté, l'ouvrage de M. Wagner (*Fragmente zur Physiologie der Zeugung*), comme encore aujourd'hui, n'était connu à Paris que par l'analyse qu'en donne M. Valentin dans son *Repertorium*. Or, ce dernier, citant également les observations antérieures de M. Mayer, de Bonn, paraît adopter l'opinion de l'existence de cils vibratiles des deux côtés de la queue, et dit (page 206) avoir eu lui-même l'occasion de les observer chez les *Salamandra maculata et atra*. M. Valentin annonçant, quelques lignes plus loin, avoir vu aussi, sur les deux côtés du *Diatoma tenuis*, le mouvement vibratile et les cils qui, suivant lui, déterminent le mouvement chez toutes les diatomées, il me semblait fort important, à moi qui, non plus qu'aucun autre observateur français, ne puis voir de cils chez les Diatomées, de vérifier les deux faits l'un par l'autre et de comparer sur les Zoospermes de Salamandre mes moyens d'observation avec ceux du savant professeur dont je ne puis partager l'opinion sur ce point et sur plusieurs autres. Sans doute les observations de M. Siebold, dont je parlerai plus loin, ne me permettent plus de réclamer la priorité pour cette découverte. Néanmoins, comme, dès le principe, j'ai vu et interprété ce phénomène d'une autre manière que lui, et que d'ailleurs le fait me semble bien digne d'intérêt, j'ai cru devoir publier ce travail.

Les Zoospermes de Salamandre avaient ancienement déjà été décrits par Spallanzani, comme pourvus d'une double rangée de cils servant d'organes locomoteurs. « Chaque corpuscule, dit ce célèbre observateur (*Opusc. Phys. t. ii*, p. 82), est composé d'un buste et d'un appendice très long, couvert de chaque côté par une série de petites pointes qui se meuvent comme de très petites rames ». On a tant de preuves, d'un autre côté, de l'imperfection des moyens d'observation de Spallazani, qu'on est tenté de croire qu'il a été dupe de quelque illusion; cependant
il est bien surprenant de voir son observation confirmée en partie après plus d'un demi-siècle. Serait-ce que l'illustre physicien italien, obligé de recourir à une main étrangère, pour figurer les objets de son étude, voyait mieux au microscope que ne semblaient l'indiquer les planches de son ouvrage? MM. Prévost et Dumas, dans leur beau travail, publié en 1824, donnèrent sur cet objet des détails aussi exacts que le permettait l'état du microscope à cette époque. Ces animalcules, disent-ils (Annales des Sciences naturelles, 1824, t. 1, p. 283), sont fort longs, fort grêles, et se terminent en avant par une tête obovale tellement plate, que lorsqu'elle se présente sur le côté, on dirait qu'ils n'en ont pas du tout. Ils se meuvent d'une manière aussi fatigante que singulière. Leur corps entier se courbe en un arc très régulier, mais qui change de direction à tout instant. Quelquefois ils exécutent cette espèce de révolution pendant plus de dix minutes, sans bouger de place. Plus loin ces auteurs ajoutent que, pour se procurer ces Zoospermes, il suffit de presser le ventre au mâle, pour en faire sortir par l'ouverture du cloaque une liqueur, qui en offre une quantité prodigieuse. C'est, en effet, de cette manière que je m'en suis procuré, et j'ai trouvé parfaitement exact ce que disent ces messieurs sur leurs mouvements; mais j'ai dû reconnaître qu'ils avaient supposé par analogie l'existence d'une tête plate, que nécessairement ils ont toujours cru voir sur le côté.

M. Bory, en 1831, dans le Dictionnaire d'histoire naturelle, et M. de Blainville, en 1834, dans son Actinologie, ne firent que suivre les indications de leurs prédécesseurs.

M. Czermak, en 1832, avait lu à la réunion des naturalistes allemands, à Vienne, un mémoire imprimé, l'année suivante, sous le titre de Beyträge zu der Lehre von der Spermatozoen, dans lequel il discute avec beaucoup de clarté la question des Zoospermes en général; mais les figures très médiocres qu'il donne, d'après ses propres observations et notamment celles de trois espèces de Salamandre et de triton, prouvent qu'il se servait d'un microscope fort imparfait; en effet, les épaisseurs qu'il indique sont au moins cinq ou six fois trop fortes, et d'ail-
leurs ces figures ne sont rien connaître de précis sur la forme des Zoospermes.

Enfin M. R. Wagner, dans un travail récent (Fragmente zur Physiologie der Zeugung, 1836), a donné une description plus exacte des Zoospermes de Salamandre (Salamandra maculata): il leur assigne une longueur totale de \( \frac{1}{2} \) ligne (moins de \( \frac{1}{2} \) millimètre), et dit qu’ils sont filiformes et se composent d’une partie antérieure plus épaisse, et d’une queue évidemment distincte, contournée et assez épaisse: il parle aussi d’un petit renflement situé à l’extrémité de la partie antérieure, et insiste particulièrement sur le mouvement vibratile aperçu le long du dos, mouvement auquel il attribue la locomotion. Les Zoospermes des Salamandres aquatiques lui ont paru conformés de la même manière; quoique plus longs et plus minces, avec la partie antérieure moins distincte de la queue. Il a remarqué que les Zoospermes pris dans le testicule sont beaucoup moins actifs que ceux du canal déférent: il les a vus, comme MM. Dumas et Prévost, tournés en cercle, autour d’un centre, presque sans changer de place.

M. Mayer, de Bonn, avait, de son côté, signalé aussi le mouvement vibratile de ces Zoospermes, et M. Valentin confirmait leur observation dans le deuxième cahier de son Repertorium pour 1837, lequel n’est arrivé à Paris qu’en mars 1838; cependant M. de Siébold, qui d’abord n’avait pu voir les organes vibratiles annoncés, avait réussi, dès le mois de mai 1837, à voir la vraie cause du prétendu mouvement vibratile dans un filament très long et très délié, enroulé en spirale autour de la queue; mais, par erreur, il supposa que ce filament est l’extrémité même de la queue, laquelle se replierait et s’enroulerait sur elle-même.

Certes, si j’ai dû regretter d’avoir pris pour entièrement neuf ce qui avait déjà été vu par un observateur plus heureux, j’ai vu avec satisfaction aussi que, sans connaître la lettre de M. de Siébold, imprimée dans le no 40, p. 281, du Neu Notizen, von Froriep, 1837, je m’étais si parfaitement rencontré avec lui, pour décrire, dans ma lettre à l’Académie, un phénomène qui a frappé d’étonnement tous ceux que j’en avais rendus témoins. Suivant M. de Siébold, la partie postérieure, représentée assez exacte-
ment par M. Wagner, comme terminées en un filament à peine visible, est beaucoup plus longue qu'on ne l'avait supposé, et revient, en s'enroulant sur elle-même en spirale jusqu'au point où commence la partie antérieure plus épaisse. Chaque Zoosperme, dit-il, se meut, en serpentant; mais, en outre, la partie postérieure et enroulée en spirale de la queue capillaire montre un mouvement propre qui consiste en une ondulation rapide. Il a vu l'ondulation se propager ordinairement d'arrière en avant, mais quelquefois aussi avoir lieu en sens inverse, ou bien s'arrêter totalement, ou seulement en partie pour reprendre ensuite son mouvement avec la même vitesse, et il a reconnu que le mouvement total du Zoosperme et celui du filament sont indépendants l'un de l'autre. Plus loin il ajoute que le filament enroulé en spirale se trouve un peu éloigné de la queue, qui lui sert d'axe, ce qui produit des deux côtés l'apparence de cils vibratiles, agités régulièrement dans une même direction, et, ce qui détermine la production de cette apparence du côté convexe des courbures de la queue, puisque alors l'axe se trouve contigu au côté concave. Il fait remarquer que M. Wagner paraît avoir pris la réalité pour une illusion, puisque, dans son ouvrage, il s'exprime ainsi: «On voit souvent aussi, comme si un filament très fin était enroulé en spirale autour de l'animal, servant d'axe». Ainsi le phénomène aurait été aperçu réellement, mais mal interprété par M. Wagner, mieux décrit par M. de Siébold, qui pourtant encore l'interprêta faussement, sous l'influence de l'idée, que le filament doit être la continuation de la queue.

Voici maintenant comment j'ai vu les Zoospermes des Triton palmipes et punctatus, et comment je les ai décrits (Compte rendu de l'Académie des Sciences, 26 mars 1837, p. 383). En avant se trouve une partie nue, plus ou moins courbée en arc; longue de \( \frac{1}{9} \) millimètre (et non \( \frac{1}{2} \), comme on l'a imprimé par erreur), épaisse de \( \frac{1}{7} \) millimètre, et moitié plus mince à l'extrémité, en arrière. Cette partie s'articule avec un filament principal quatre fois plus long, et s'amincissant à partir du point d'attache, où il a \( \frac{1}{10} \) millimètre, jusqu'à la pointe où il a moins de \( \frac{1}{10} \) millimètre; mais ce qu'il y a de remarquable, c'est l'existence d'un filament accessoire, partant du point de jonction et formant
autour du filament principal une hélice lâche, dont le diamètre est de \(\frac{7}{10}\) millimètre, de sorte que sa longueur, s'il était développé, serait presque d'un millimètre. Son épaisseur au grossissement de 325 diamètres m'a paru égale à celle d'un brin de laine de \(\frac{7}{3}\) millimètre, vu à l'œil nu, ce qui permet de l'évaluer à \(\frac{1}{1500}\) millimètre.

Pendant que le filament principal ou la queue du Zoosperme se courbe lentement de diverses manières et se meut d'un mouvement ondulatoire, le filament accessoire s'agite avec une grande vitesse par des ondulations qui se propagent de la base vers la pointe.

A cela je puis ajouter que plusieurs fois j'ai vu à l'extrémité antérieure un léger renflement analogue à ce que M. Wagner indique chez les zoospermes de Salamandres, mais trop peu constant pour que je le crusse fort important. Je dois dire aussi que j'ai vu distinctement, plusieurs fois, le filament accessoire se séparer du filament principal dans une étendue de trois à quatre ondulations (fig. 8c), et que cela m'a paru, ainsi qu'aux personnes qui observaient avec moi, difficile à concilier avec l'hypothèse de l'enroulement en spirale; cependant on peut, à la rigueur, supposer qu'en raison de son mouvement ondulatoire, plus vivement agité sur un point, il se trouve momentanément un peu déroulé sur un autre point. Cette hypothèse de l'enroulement en spirale qui la première se présente à l'esprit à l'aspect de ce phénomène, rend compte bien plus facilement de la subordination constante des deux filaments. Si l'on supposait, en effet, que le filament accessoire n'est que juxtaposé en zig-zag d'un côté, il faudrait supposer mise en jeu quelque force inconnue pour le retenir constamment contre l'autre. M. de Siebold, qui tout d'abord a adopté l'hypothèse de l'enroulement en spirale, dit bien qu'avec un fort grossissement on ne voit pas en même temps au foyer les deux côtés opposés de la spire, ce qui ne laisserait aucun doute sur sa vraie disposition; mais je dois dire que je n'ai pu bien saisir ce caractère.

Il me reste à parler de la différence essentielle qui se trouve entre la description de M. de Siebold et la mienne, c'est-à-dire de l'origine du filament : M. de Siebold veut que ce soit l'extré-
mité de la queue qui se replie, et l'on doit convenir que son opinion se trouve sur ce point d'accord avec ce que l'on sait de l'enroulement qu'éprouvent les zoospermes d'invertébrés au contact de l'eau, enroulement analogue à celui que présente un fil fortement tordu dont on rapproche tout-à-coup les extrémités, et que dans notre langue on pourrait exprimer par le mot de *vrillement*. Je suis convaincu, au contraire, que ce filament part réellement du point de jonction des deux parties du zoosperme, car on ne le voit jamais dépasser ce point dans un sens ni dans l'autre, et n'y eût-il que cette circonstance, je ne crois pas qu'on pût l'expliquer d'une manière plausible dans l'autre hypothèse ; mais de plus, ce filament, qui à son origine forme des ondulations plus courtes et plus serrées, et, en partant de là, des ondulations de plus en plus lâches, je l'ai toujours vu, à l'extrémité, se détacher du filament principal et s'agiter librement à une certaine distance du filament principal, qui se termine aussi isolément. Voilà des faits que je puis affirmer et que d'autres ont vu comme moi. Quant à ce qui est de la direction du mouvement ondulatoire, je ne sais comment m'expliquer que M. de Siebold ait vu ce mouvement se propager ordinairement d'arrière en avant, et quelquefois seulement d'avant en arrière ; c'est cette dernière direction qui m'a paru la seule réelle, et même, quand les zoospermes se sont courbés et tordus sur eux-mêmes de diverses manières comme dans la figure 8 *b*, on suit encore cette même direction invariable à travers tous les détours qu'elle est forcée de faire.

Il est clair que le phénomène exposé comme l'a fait M. de Siebold, n'a rien qu'on ne puisse, à la rigueur, concilier avec ce qu'on savait d'avance ; il ne s'agit, en effet, que d'une queue beaucoup plus longue, et, malgré sa ténuité, exécutant avec une régularité parfaite des mouvements extraordinaires. Ce phénomène, comme je le vois au contraire, est entièrement nouveau, et la disposition du filament accessoire nous rappelle celle du fil inducteur dans les expériences de l'électricité, de sorte qu'on est conduit à chercher une relation de vitalité entre les deux filaments.
V. Observations sur les Tænias; et sur les mouvemens de leur embryon dans l'œuf,

Par M. F. Dujardin.

Dans le tome VIII de ces Annales, j'ai fait connaître une observation qui m'a paru fort importante sur la vitalité et sur les mouvemens de l'embryon d'un Distome dans l'œuf. Les recherches qui m'avaient conduit à cette observation étaient commencées depuis fort long-temps; cependant c'était là le premier fait concluant qui se présentait à moi. Depuis lors comme auparavant, je n'ai pas eu entre les mains un seul Entozoaire vivant sans examiner soigneusement ses œufs; mais les circonstances nécessaires à la production des phénomènes de vitalité se rencontrent rarement toutes à-la-fois, et, soit que les œufs ne fussent pas miirs, soit que je les observasse dans un liquide ou à une température peu convenables, je ne trouvai pas ce que je cherchais. Cependant j'avais remarqué depuis long-temps dans les œufs globuleux de certains Tænias, notamment dans ceux du Tænia fringillarum et du Tænia filicollis de l'épinoche, que les œufs contiennent six crochets de nature cornée, disposés symétriquement par paires, savoir: une paire rapprochée au milieu parallèlement au diamètre, et une paire disposée obliquement de chaque côté et pouvant s'élever ou s'abaisser de manière à former le même angle, soit aigu, soit droit ou même obtus à droite et à gauche de la paire du milieu. Ce fait m'avait d'abord paru s'accorder avec la présence des crochets dont est armée à l'intérieur la tête de la première espèce; mais dans la seconde espèce on ne pouvait supposer une telle relation, car le Tænia de l'épinoche est du nombre des espèces inermes. Toutefois, je pensai que s'il devait se produire des mouvemens dans l'embryon, ces crochets seraient bien propres à les rendre manifestes, et je dirigeai toute mon attention sur cet objet;
ce n’est pourtant que dans le courant du mois de juin que j’ai réussi à voir avec une entière évidence les mouvements que je cherchais. J’ai dû à l’obligeance de M. Mandl de pouvoir recueillir des Entozoaires vivans dans un grand nombre de chiens soumis par lui à ses expériences physiologiques, et j’ai trouvé en particulier les Tænias serrata et cucumerina à tous les degrés de développement. C’est la dernière de ces espèces dont les œufs globuleux, larges de $\frac{1}{4}$ millimètre, sont revêtus d’une coque transparente, qui m’a présenté le phénomène de la manière la plus remarquable : les six crochets dont est pourvu l’embryon se meuvent par paires et d’un mouvement alternatif pendant fort long-temps, de sorte qu’on voit les deux paires latérales élever leur pointe et se rapprocher de la paire moyenne jusqu’à devenir presque parallèles, puis s’éloigner de nouveau en abaissant leur pointe et relevant leur tige jusqu’à former un angle obtus. Cette disposition ternaire est vraiment fort singulière, et se trouve en contradiction avec les nombres qu’on observe le plus souvent dans les organes des Zoophytes ; peut-être cette disposition est-elle l’effet d’une illusion, et les six crochets également espacés ne semblent-ils disposés par paires que par un effet de projection ; cependant elle m’a paru si constante que je la crois réelle.

En même temps que les crochets se meuvent ainsi, on voit la masse charnue diaphane de l’embryon se contracter dans un sens et dans l’autre, et s’approcher ou s’éloigner de la coque dont elle est séparée par un liquide transparent. Au-dessous des crochets, on distingue de chaque côté une masse glanduleuse, ovoïde, moins diaphane que le reste, située obliquement et participant un peu aux mouvements de la masse ; quelquefois aussi on remarque des vacuoles variables vers le milieu de l’embryon.

Les œufs du Tænia serrata, également globuleux, larges de $\frac{1}{4}$ millimètre, sont beaucoup plus opaques ; ils ne me laissaient voir d’abord rien de semblable dans l’embryon, qui est beaucoup plus petit en raison de l’épaisseur de la coque ; mais enfin, en les prenant à l’instant où ils venaient d’être pondus, par un article spontanément séparé du Tænias, et en forçant la lumière, je suis parvenu à voir les crochets beaucoup plus petits
de l'embryon et les mouvements dont ils fournissent si facilement la preuve.

On pourrait être surpris de ce que, dans les œufs du Tænia serrata, l'une des espèces armées les mieux caractérisées, et possédant une couronne de 22 à 24 crochets, l'embryon n'a que des crochets faibles et comme rudimentaires, tandis que dans les œufs du Tænia cucumerina, espèce inerme, les crochets sont si visibles et si prononcés; mais en y faisant plus d'attention, on reconnaît qu'il n'y a pas de rapport entre les crochets de l'embryon et ceux qui forment la couronne autour de la tête des individus armés; la forme est toute différente: ceux-ci sont courts, très recourbés, et pourvus de deux apophyses presque égales pour l'insertion des faisceaux adducteurs et abducteurs, à la manière des mandibules de certains insectes. Les crochets des embryons sont effilés, falciformes, et terminés par une longue tige droite. Leur mouvement alternatif ressemble tout-à-fait à celui des mandibules des Brachions et des Rotateurs; on serait donc porté à croire qu'ils doivent devenir des pièces intérieures d'un œsophage bien plutôt que des pièces extérieures, car, d'une part, on les observe chez des espèces inermes; en second lieu, les six crochets du Tænia fringillarum sont réellement situés à l'intérieur de la trompe et conservent une position assez semblable à celle qu'ils ont dans l'embryon; enfin, à l'intérieur de la saillie protractile, que le Tænia cucumerina avance entre les sucoirs ou ventouses à la manière d'une trompe, on distingue une garniture de petites pièces discoïdes d'apparence cornée, et rappelant par leur disposition les dents en pavé des sparus.

Sans doute, cette interprétation suppose que le tubercule central protractile de la tête des Tænias est réellement traversé par un œsophage. Je n'ai pas de preuves suffisantes pour le moment à apporter de ce fait; cependant, chez les deux dernières espèces, j'ai vu plusieurs fois, à l'intérieur, l'apparence d'un large tube terminé en cul-de-sac un peu en arrière des ventouses, et rappelant assez, par sa forme, la cavité buccale des Actinies et des Hydres. A la vérité, je n'ai point vu les deux canaux longitudinaux du cou aboutir à cette cavité centrale;
mais aussi je ne les ai point vus, non plus qu'aucun autre helminthologiste, aboutir aux ventouses latérales. Jusqu'à présent on ne peut que former des conjectures sur la destination de ces canaux. Si d'ailleurs on veut considérer comment se meuvent les diverses parties de la tête d'un de ces Tœnias vivant, on reconnaîtra que les quatre suçoirs s'avancent alternativement comme des organes de locomotion, pour prendre un point d'appui sur le support, tandis que le tubercule central, offrant à l'extrémité l'apparence d'une ouverture, s'allonge et se contracte alternativement comme une vraie trompe qui cherche la nourriture, et sans s'appuyer comme les ventouses.

Les œufs pris dans un article de Tœnia cucumerina un peu avant la maturité, sont groupés au nombre de 4 à 22 dans des masses ovoïdes d'une substance albumineuse assez résistante; ils sortent ainsi réunis, si on comprime ou si l'on déchire l'article qui les contient, et l'on croit voir flotter dans le liquide des œufs très volumineux; mais les œufs proprement dits sont beaucoup plus petits, et ne s'aperçoivent bien qu'avec une loupe de 3 à 4 lignes de foyer. Pris dans cet état, les œufs montrent déjà les crochets; mais l'embryon, plus petit, n'occupe guère que la moitié de la coque de l'œuf et ne se meut pas encore. Si l'on considère que les articles de cette espèce de Tœnia sont du nombre de ceux où les organes génitaux paraisSENT le plus compliqués, et où l'on aurait plus de raison d'admettre des organes mâles et femelles, on sera forcé de recourir à des suppositions fort hasardées pour expliquer la fécondation, puisque les œufs montrent des indices de développement long-temps avant d'arriver à l'orifice du prétendu organe mâle.

Les œufs du Tœnia serrata ne sont point groupés ainsi dans les articles; ils m'ont paru toujours isolés; mais ils m'ont présenté une autre particularité digne de remarque: leur coque, beaucoup plus épaisse et d'un blanc presque opaque, paraît composée de petites pièces aréolées, déprimées au centre comme la coque des œufs d'Alcyonelles: cette coque réfracte si fortement la lumière, qu'elle produit l'apparence d'un anneau brillant autour de l'embryon: on peut juger par là qu'elle doit être très résistante, et qu'à l'abri sous une telle cuirasse, les œufs de
Tænia, disséminés sur les corps extérieurs en quantité prodigieuse, peuvent, dans certains cas, échapper aux nombreuses causes de destruction et attendre pour se développer qu’ils soient arrivés à un gîte convenable. Si donc il peut arriver que des êtres d’une organisation très simple doivent leur naissance à une génération spontanée, il n’est pas nécessaire de recourir à ce moyen pour expliquer l’apparition des Entozoaires, comme l’a fait Rudolphi, qui croyait à tort que les œufs des Tænias doivent avoir une structure encore plus délicate et une existence plus frêle que ces Entozoaires eux-mêmes.

Pour se faire une idée de la quantité d’œufs que doit fournir un Tænia serrata, il faut considérer qu’il fournit successivement 200 articles au moins qui, arrivés à leur maturité, contiennent chacun 5 millimètres cubes d’œufs ; ces articles disséminent leurs œufs en rampant sur différents corps comme de véritables animaux, après qu’ils se sont séparés à leur maturité : il en résulterait donc au moins mille millimètres cubes ou 25 millions d’œufs pour chaque Tænia; or, il n’est pas rare de trouver huit ou dix de ces Entozoaires dans un seul chien. On trouve dans l’intestin, de ces articles mûrs isolés qui se meuvent avec une vitesse fort grande comparativement à celle du Tænia lui-même; j’en ai vu parcourir en une minute un espace de trois pouces et plus, en se contractant d’arrière en avant comme les cucurbitains ou articles du Tænia solium, dont les mouvements ont été bien décrits par Rudolphi. Si on les place dans un flacon ou sous une cloche humide, on les voit bientôt s’élever en rampant le long des parois et en parcourir plusieurs fois la circonférence ; sur leur passage, ils laissent une trace blanchâtre comme laiteuse, dans laquelle on aperçoit à la loupe les œufs mis successivement dehors par l’appendice latéral que Rudolphi nomme le lemnisque. Ils continuent ainsi à vivre pendant plusieurs jours, plus ou moins, jusqu’à ce qu’ils soient entièrement vidés d’œufs et réduits à moitié de leur volume primitif : leur destinée est alors accomplie, et ils restent sans mouvement. On ne peut donc pas douter qu’ils n’effectuent leur ponte de la même manière lorsqu’ils sont expulsés hors de l’intestin avec les excréments, ou lorsqu’ils sortent spontanément par cette voie.
comme il arrive quelquefois chez les chats, pour des articles isolés du *Taenia crassicollis*, qui est une espèce à tête armée fort analogue au *Taenia serrata*.

EXPLICATION DE LA PLANCHE 1er

Fig. 1. Grossie 300 fois, Spongille ou éponge d'eau douce, portion écrasée entre deux plaques de verre et montrant rassemblées des spicules de diverses formes, savoir : les unes (a), en plus grand nombre, lisses et fusiformes, d'autres (b) avec des nœuds ou (c) avec des inflexions; quelques-unes montrent aussi l'apparence d'un canal creux. Des spicules (d) beaucoup plus petites sont plus ou moins courbes et hérisssées de pointes. Au milieu ou voit une portion de la matière animale vivante.

Fig. 2. Parcelles vivantes détachées de la spongille et se mouvant, à la manière des amibes, sur la plaque de verre couverte d'eau a, b et c montrent les formes différentes sous lesquelles se présente une même parcelle à quelques minutes d'intervalle.

Fig. 3. Groupe de parcelles vivantes de la spongille, montrant sur son contour des filaments flagelliformes très fins.

Fig. 4. Plusieurs expansions glutineuses, diaphanes, et parcelles montrant des expansions digitées plus longues, et se mouvant dans le sens indiqué par la flèche.

Fig. 5. Halisarca, nouveau genre de la famille des éponges, formant des plaques charnues, rongéâtres à la base du *Fucus palmatus*. Parcelles vivantes, détachées de la masse et montrant des expansions nombreuses filiformes.

Fig. 6. *Volvox vegetans* M. (Anthophyes Bory): — a, vaisseaux terminés par les rosaces d'animalcules (grossi 400 fois); — b, une seule rosace sur son support (grossi 450 fois); — c, un seul animalcule détaché.

Fig. 7 a-b, *Hexamita* (grossi 1000 fois), nouveau genre d'infusoirs de la famille des *Monadaires*, présentant en avant quatre filaments flagelliformes très longs, et terminée en arrière par deux prolongements, portant chacun un filament, avec quelquefois un troisième prolongement intermédiaire; il se trouve dans l'eau de marais recueillie depuis vingt-quatre ou quarante-huit heures, et dans laquelle sont déjà morts des larves d'insectes ou d'autres animaux.

Fig. 8. Zoospermes de *Triton palmipes* (grossi 320 fois): — a, zoosperme traversant le liquide et se mouvant d'un mouvement ondulatoire; — b, zoosperme qui se roule sur lui-même, sans changer de place; les parties, rapprochées et comme pressées ensemble dans ce mouvement, montrent cependant encore partout les ondulations du filament accessoire, suivant la direction indiquée par la flèche; — c, portion de zoosperme, pour montrer comment le filament accessoire peut se séparer du filament principal dans une certaine étendue.

Fig. 9. Zoosperme du Crapeaud (*Bufo cinereus*), grossi 400 fois: il se compose d'une partie solide, longue de 23 à 30 millièmes de millimètre, amincie en avant, renflée en manière de tête par derrière, et terminée par un filament très délié, long de 43 millièmes de millimètre, servant seul à la locomotion. Il est figuré ici pour faire voir la différence qui existe entre les zoospermes de Salamandre et ceux des autres Batraciens. Czermak et ses prédécesseurs, n'ayant pu voir le filament terminal, avaient cru que le renfllement devait être la tête du zoosperme, et que la partie amincie antérieure est sa queue.

Fig. 10. OEufs de *Taenia cucumërina* (grossi 600 fois; montrant à l'intérieur l'embryon, qui se meut, en se contractant dans un sens et dans l'autre, et en rapprochant ses crochets, qu'on voit alternativement dans les positions a, b; en même temps on voit au dessous des crochets deux masses glenduleuses symétriques; — c, un crochet séparé.
Nouvelles observations sur le parallèle des extrémités; dans l'Homme et les Quadrupèdes,

Par M. Flourens.

L'analogie des membres supérieurs et inférieurs a frappé, de bonne heure, tous les observateurs; il a suffi, pour ainsi dire, d'y regarder pour retrouver toutes les parties d'un membre dans l'autre, l'épaule dans la hanche, le bras dans la cuisse, l'avant-bras dans la jambe, la main dans le pied, les diverses parties de la main dans les diverses parties du pied, le carpe dans le tarse, le métacarpe dans le métatarse, les doigts dans les orteils.

Il a été plus difficile de rapporter individuellement chaque os d'un membre à chaque os de l'autre. Chose étrange, on ne sait pas encore s'il faut comparer ensemble l'humérus et le fémur du même côté, ou l'humérus d'un côté et le fémur de l'autre; on ne sait pas quel est celui des deux os de l'avant-bras, le radius ou le cubitus, qu'il faut comparer à tel ou tel des deux os de la jambe, le tibia ou le péroné.

Vicq-d'Azir, dans un mémoire célèbre (1), prétend « qu'une extrémité antérieure répond et ressemble principalement à la postérieure du côté opposé »; et M. Cuvier répète l'assertion de Vicq-d'Azir : « C'est la droite d'une paire, dit-il, qu'il faut comparer à la gauche de l'autre. »

Mais il est aisé de faire voir que cette opinion d'une analogie renversée, proposée par Vicq-d'Azir, n'est nullement fondée; et que, tout au contraire de cette opinion, ce sont les deux extrémités du même côté qui se reproduisent l'une l'autre, et qu'il faut comparer l'une à l'autre.

En effet, si, détachant, par exemple, l'extrémité antérieure

---

(1) Vicq-d'Azir, Mémoire sur le parallèle des extrémités dans l'homme et les quadrupèdes.
droite d'un squelette, on la compare avec l'inférieure du même côté, la main étant dans la pronation, sans rotation du radius, on a un rapport exact de la main avec le pied; à la main comme au pied, les pouces sont en dedans, les petits doigts en dehors, etc.; mais alors l'humérus et le fémur sont en opposition complète: le fémur a sa tête en dedans, son grand trochanter en dehors, etc., tandis que l'humérus a sa tête en dehors, sa grosse tubérosité en dedans, etc. Ainsi, dans ce premier cas, où l'on compare les deux extrémités du même côté, lequel cas est celui qu'a voulu corriger Vicq-d'Azyr, on a un rapport exact, direct, de la main avec le pied, mais un rapport inverse de l'humérus avec le fémur.

Si l'on compare, au contraire, à l'exemple de Vicq-d'Azyr, l'extrémité antérieure gauche avec l'extrémité postérieure droite, la main étant toujours dans la pronation, et toujours sans la rotation du radius (c'est-à-dire par l'inversion du membre entier, et comme elle s'opère sur le squelette), on rétablit les rapports directs du fémur avec l'humérus, mais on renverse ceux de la main avec le pied. Ainsi, toujours un renversement: dans le premier cas, à la partie supérieure, et dans le second, à la partie inférieure des extrémités.

Si enfin on compare les deux extrémités du même côté, la main étant dans la pronation, mais par son mécanisme vrai, naturel, le seul possible sur le vivant, par la rotation du radius, on a partout des rapports directs; par l'effet seul de ce mécanisme, l'humérus, le fémur, la main, le pied du même côté, toutes ces parties se trouvent tournées dans le même sens; et ce même sens de toutes les parties correspondantes est précisément ce qui constitue la solution réelle de la difficulté, et la preuve démonstrative de l'analogie cherchée.

La longue indécision des anatomistes touchant les rapports réels des membres supérieurs et inférieurs, ne tenait donc qu'à l'oubli, dans des comparaisons faites sur le squelette, du mécanisme vrai de la pronation de la main par la rotation du radius; et la simple restitution de ce mécanisme suffit pour rendre, comme je viens de le dire, à toutes les parties correspondantes une position semblable.
Or, dans cette position semblable de toutes les parties des deux extrémités du même côté, donnée par le mécanisme vrai de la pronation de la main, le radius répond au tibia, et le cubitus au péroné. C'est justement le contraire de ce qu'a pensé Vicq-d'Azyr, qui assimile le cubitus au tibia et le radius au péroné. Mais, indépendamment de la raison décisive, tirée du vrai mécanisme de la pronation de la main, combien d'autres raisons encore ne se présente-t-il pas contre l'opinion que je réfute, les unes prises de l'anatomie même de l'homme, et les autres de l'anatomie comparée.

Dans l'Homme, l'os essentiel de l'avant-bras, l'os qui continue le bras, l'os qui porte la main, est le radius; le cubitus n'est là que pour, d'une part, élargir la surface des insertions musculaires, et, de l'autre, prêter un appui solide au membre pendant la rotation de l'os principal, du radius. De même, au membre inférieur, l'os essentiel de la jambe, l'os qui continue la cuisse, l'os qui porte le pied, est le tibia. Plus évidemment encore qu'au membre supérieur, le péroné n'est là que pour l'agrandissement des surfaces musculaires; il ne prend aucune part à l'articulation avec le fémur; il n'en prend qu'une latérale avec le pied.

Dans les animaux, le rôle subordonné du cubitus et du péroné, et par suite leurs rapports respectifs, deviennent plus incontestables encore, s'il est possible. Déjà, dans les Chauve-souris, dans les Galéopithèques, le cubitus n'est plus qu'un filet très grêle; ce même cubitus ne se montre plus qu'en vestige dans les Ruminans, dans les Solipèdes; le péroné, déjà très grêle dans les Chauve-souris, déjà simple rudiment styloïde dans le Cheval, manque à-peu-près tout-à-fait dans plusieurs Ruminans (1), ou n'y est représenté que par un petit os qui forme la malléole externe; ce même péroné est toujours imparfait dans les Oiseaux, etc.

Que l'on consulte donc ou l'Homme ou les animaux, on voit

(1) Je dis plusieurs Ruminans; car, dans le Bœuf, l'Élan, le Duim, le Cerf de Timor, etc., on trouve, outre l'os de la malléole externe, un rudiment styloïde du péroné, attaché, comme dans les Solipèdes, au côté externe de la tête du tibia.
que le radius répond au tibia, le cubitus au péroné; et, ce qui ajoute le dernier trait à ce qui vient d’être dit, c'est que, dans la pronation naturelle, quoique temporaire, de l'Homme, les deux os de l'avant-bras sont un peu croisés, comme ils le sont dans la pronation constante des animaux.

Mais on demandera sans doute ce que devient la rotule dans ma manière de voir. La rotule, selon Vicq-d'Azyr, répond à l'olécrane. Ces deux os se répondraient en effet, du moins par la position qu'ils prendraient alors, le membre antérieur droit étant comparé, comme le veut Vicq-d'Azyr, au membre postérieur gauche ; mais vous remarquerez que l'olécrane forme une véritable apophyse, c'est-à-dire une véritable partie du cubitus, tandis que la rotule n'a nul rapport possible avec le péroné(i). La rotule est donc un os particulier, sans nulle analogie réelle avec l'olécrane, simple os sésamoïde, placé dans le tendon du triceps crural pour faciliter le jeu de ce tendon sur le fémur, comme, précisément à l'opposée, c'est-à-dire à la partie postérieure des condyles, il s'en développe si souvent dans le point de chaque tendon des jumeaux qui répond aux condyles.

Il ne reste plus qu'à montrer les rapports des os de l'épaule avec ceux de la hanche. Vicq-d'Azyr avait déjà comparé d'une manière générale l'épaule à la hanche. Les progrès de l'Ostéologie comparée ont permis, depuis, de retrouver chacun des trois os de l'épaule, l'omoplate, le coracoïdien, la clavicule, dans chacun des trois os de la hanche, l'iléon, l'ischion et le pubis.

J'ajoute que l'exemple des oiseaux met l'analogie respective de ces différents os dans tout son jour. L'omoplate, l'iléon, y sont situés en haut et parallèlement à l'épine du dos; viennent ensuite à l'épaule, le coracoïdien, à la hanche, l'ischion; et puis la clavicule, vulgairement fourchette, et le pubis, filet détaché comme la clavicule, et à qui il ne manque que de s'unir par son bout libre au filet opposé, pour former, comme la clavicule, une fourchette ou petite fourche.

(i) Pas même par le tendon du triceps crural, lequel s'insère non au péroné, mais au tibia et au tibia seul.
Dans l'Homme et les Quadrupèdes.

Donc, dans la comparaison générale des extrémités supérieures et inférieures, ce sont les extrémités du même côté qui doivent être comparées ensemble ; donc, dans la comparaison des deux os de l'avant-bras aux deux os de la jambe, c'est le tibia qu'il faut comparer au radius, et le cubitus au péroné ; donc enfin, dans l'épaule comparée à la hanche, c'est l'homoplate qui répond à l'iléon, le coracoïdien à l'ischion, et le pubis à la clavicule. (1)

Quant à la comparaison de la main avec le pied, Vicq-d'Azyr a donné le rapport exact des os du carpe et du tarse. Le pisoforme et le pylémidal, réunis, répondent au calcaneum, le semi-lobaire à l'astragale, et le scaphoïde au scaphoïde. Pour la seconde rangée, il ne peut y avoir de difficulté. Le trapèze, le trapézoïde, le grand os, répondent évidemment aux trois os cunéoïformes, et le cuboïde répond à l'os crochu.

Le doute, s'il y a doute, ne peut donc porter que sur la première rangée ; et, dans cette première rangée même, que sur un seul point, savoir, le rapprochement des deux scaphoïdes. Or, supposez le semi-lobaire grand à la main, comme l'astragale l'est au pied, il repoussera nécessairement le scaphoïde, il le portera en avant ; et, ce qui le prouve, c'est l'allongement du pouce du pied, comparé au pouce de la main, allongement qui n'a, en effet, d'autre cause que le déplacement du scaphoïde, son transport en avant, et sa position sur la même ligne que les autres os du pouce ; car chacun de ces autres os, pris séparément, est peut-être, proportionnellement, plus court au pouce du pied qu'au pouce de la main.

Je ne parle ni de la comparaison du métacarpe et du métatarses, ni de la comparaison des doigts et des orteils ; l'analogie de toutes ces parties les unes avec les autres, de chaque os du métacarpe avec chaque os du métatarses, de chaque doigt avec chaque orteil, est trop évidente.

(1) Je n'ai pas parlé de l'opposition des angles que font les articulations des deux extrémités du même côté, comparées ensemble ; car ce n'est pas là une difficulté réelle. Le sens quel-conque des articulations ne change évidemment rien à l'essence des os, et par conséquent à leurs Analogies. D'ailleurs, dans la manière même de voir de Vicq-d'Azyr, l'angle de l'articulation de la main en pronation est encore opposé à celui de l'articulation du pied.
J'ajoute seulement que, dans les Singes, où le carpe a neuf os, deux os du carpe répondent à l'astragale (le semilunaire et le surnuméraire), comme deux au calcanéum (le pyramidal et le pisiforme).

Je ne me suis occupé, dans cet article, que du rapport des os dans les deux extrémités comparées; je m'occuperai, dans un autre, du rapport des muscles, des nerfs et des vaisseaux.

**EXPLICATION DE LA PLANCHE 3.**

Fig. I. Jambe ou extrémité inférieure droite.

a. Le fémur.
b. Le tibia.
c. Le péroné
d. Le gros orteil.
e. Le petit orteil.

Fig. II. Bras ou membre supérieur droit, en pronation par la rotation, non du radius seul, mais du membre entier.

a. L'humérus.
b. Le radius.
c. Le cubitus.
d. Le pouce.
e. Le petit doigt.

Nota. Dans ce parallèle des deux extrémités du même côté, tel que le faisaient les anciens, le fémur et l'humérus sont en sens inverse: l'un a sa tête à droite; l'autre l'a à gauche, etc.; mais toutes les parties de l'avant-bras et de la jambe proprement dite se correspondent: le pied a le gros orteil en dedans et le petit en dehors; la main a le pouce en-dedans, le petit doigt en-dehors, etc.; le tibia répond au radius, le péroné au cubitus, etc.

Fig. III. Bras ou membre supérieur gauche, en pronation par la rotation, non du radius seul, mais du membre entier.

a. L'humérus.
b. Le radius.
c. Le cubitus.
d. Le pouce.
e. Le petit doigt.

Nota. Dans ce parallèle, proposé par Vicq-d'Azyr, de l'extrémité supérieure d'un côté avec l'extrémité inférieure de l'autre, la correspondance du fémur et de l'humérus est rétablie; mais tous les rapports de la jambe proprement dite et de l'avant-bras sont renversés: le pied a son pouce en-dedans et son petit doigt en-dehors; à la main, c'est tout le contraire, le pouce est en-dehors, le petit doigt en-dedans; le radius répond au péroné, le cubitus au tibia, etc.
Fig. IV. Bras droit en pronation par le mécanisme vrai, c'est-à-dire par la rotation seule du radius.

a. L'humérus.
b. Le radius.
c. Le cubitus.
d. Le pouce.
e. Le petit doigt.

Nota. Dans ce nouveau parallèle, que je propose, la correspondance règne partout: l'humérus et le fémur ont leurs têtes tournées du même côté; et, soit à l'avant-bras, soit à la jambe; tous les rapports reparaissent. Au pied, comme à la main, le gros doigt est en-dedans, et le petit en-dehors; le radius répond au tibia, le cubitus au péroné, etc.

Fig. V. Colonne vertébrale, os de l'épaule et os de la hanche d'un jeune Paon.

1. 1. 1; Colonne vertébrale.
a. Omoplate.b. Coracoïdien;
c. Clavicule.
d. Prolongement terminal du pubis.

Nota. À l'épaule et à la hanche, les os correspondants sont, à dessin, marqués des mêmes lettres: d est le prolongement du pubis d'un côté, qui, se portant vers celui du côté opposé, reproduit la disposition en fourche de la clavicule.

Observations sur une nouvelle espèce de Floscularia,

Par M. Peltier.

Dans la deuxième section de la classe des Rotateurs de sa classification des Infusoirs, M. Ehrenberg a placé dans l'ordre des Cuirassés la famille des Floscularia; il nomme cette section Schizatrocha, roue divisée, dont voici les caractères, tirés de la Floscularia proboscidea: « Floscularia major, urceolo gelatinosum, pellucido, cylindrico, lobis rotatorii brevis ciliatis 6, proboscidem mediam ciliatam amboentibus.

Dans son troisième mémoire, en 1834, il a dessiné l'espèce qu'il a nommée Floscularia ornata; il lui donne six faisceaux
et un tube gélatineux pour enveloppe, dans lequel se retire l'animal dans sa contraction. Depuis quelques années, j'ai trouvé dans les eaux du bois de Meudon un animal ayant la plus grande ressemblance avec la Floscularia ornata du savant allemand, mais qui en diffère par des caractères si tranchés, qu'il est impossible de les confondre. L'animal que j'ai trouvé ne peut se classer parmi les Rotateurs, d'après le sens que l'on donne généralement à ce mot; ses cils s'ouvrent lentement, et restent dans un repos complet pendant tout le temps de leur épanouis- sement; la division est pentagone et non sexagone; il n'a pas d'enveloppes gélatineuses, ni de mandibules dentées. Ne pouvant rapprocher le sujet de mon observation avec la Floscularia ornata, je me bornerai à en donner la description, laissant à M. Ehrenberg le soin de lui assigner sa place dans sa classification.

Dans le mois d'août 1832, je trouvai dans l'eau d'un fossé du bois de Meudon une espèce de Polype dont je n'avais vu la description nulle part. Sa forme était celle d'un vase membraneux très ouvert et d'une grande transparence; son bord festonné présentait cinq têtes armées de bras contractiles; l'ouverture de ce vase était formée d'une membrane diaphane sous laquelle était un corps granuleux ovoïde, ne remplissant que le sixième environ de l'espace intérieur, le reste ne paraissant contenir aucune substance organisée; il était porté par un pédoncule assez court, qui paraissait formé de la prolongation de la membrane générale. Chaque tétine poussait des bras plus ou moins nombreux; cinq au moins étaient toujours en élévation pour chacune d'elles, et différemment prolongés, les uns en rétraction, les autres en extension. En les regardant par leur extrémité, on voyait que ces bras étaient tubulés; leurs mouvements étaient lents et progressifs; il n'y avait nulle part de contraction brusque; quelquefois on apercevait un léger frémissement dans le corps ovoïde, puis il reprenait sa première immobilité. Pendant le cours de cette année, je vis un assez bon nombre de ces petits Polypes, tous à peu-près au même degré d'organisation.

Dès le mois d'avril 1833, je retournai puiser de l'eau au même endroit, dans l'espoir de recueillir de nouveau cet animalcule.
Ce fut en vain que je le cherchai et que je l'ai cherché depuis. Mais si je ne pus retrouver ce Polype tel que je l'avais rencontré l'année précédente, j'en trouvai une autre espèce qui avait avec lui une grande analogie, mais qui en différait par des points tellement importants, qu'il n'était pas possible de les confondre. Il avait, comme le précédent, une bouche armée de cinq té- tines; mais au lieu de bras contractiles en nombre assez limité, elles étaient ornées chacune d'un pinceau de soies excessivement longues et déliées qui s'ouvraient en éventail concave, de manière à former un immense entonnoir où venaient se prendre les petits animaux. Ces soies n'avaient plus de ces contractions, ni de ces élongations qui pussent les rapprocher des bras des Hydres; elles n'avaient aucun mouvement en propre, et n'aga- taient pas le liquide : leur immobilité permettait de les voir con- stamment jusqu'à leur dernière extrémité. A un grossissement de 250 fois en diamètre, leur grosseur paraissait être celle d'un fil de cocon dédouble. Le déplacement de ces cils n'avait lieu que par la contraction ou l'extension de la bouche qui les ra- menait en faisceau ou les ouvrait en un large cône. Le disque intérieur ne remplissait pas encore toute la cavité membraneuse; cependant il était plus considérable que celui du Polype de l'an- née précédente : il remplissait la moitié du corps, et contenait beaucoup de matière verte. Le pédoncule, plus allongé, se con- tractait quelquefois sur lui-même et était à cet animal l'immo- bilité du premier.

En 1834, je le retrouvai au même endroit, mais plus avancé en organisation. Ses contractions sur son pédoncule étaient plus promptes, plus nombreuses ; la membrane formant la cavité buccale était très contractile : elle se contractait dans les deux sens; par les contractions latérales, l'amplitude de la cavité était diminuée, et, par celles qui étaient longitudinales, il se formait un pli rentrant au milieu qui fermait tout-à-fait la moitié infé- rieure de cette cavité. C'est par la pression de ce pli membra- neux sur la proie, que cet animal la fait pénétrer de force dans le corps granulé. Ce dernier remplissait alors tout l'espace inté- rieur, et les granules qui le composaient se massaient quelque fois et changeaient de position.
Je ne pus me procurer cet animal en 1835, mais je l'ai retrouvé en 1836, à peu-près tel que je l'ai laissé en 1834. Cependant il est plus gros; quelques individus ont jusqu'à deux millimètres dans leur extension complète du bout du pédoncule à l'extrémité des soies; il est plus actif, plus vorace, plus riche en cils; une des tétines a un prolongement mobile que je n'avais pas encore remarqué: en résultat, il a fait encore quelques progrès, mais plus faibles que ceux des années précédentes.

Lorsque de petites Cyclides pénètrent dans l'espace limité par les soies immobiles, elles sont comme irrésistiblement entraînées vers l'orifice largement ouvert; souvent on les voit rétrograder, fuyant cette ouverture; mais aussitôt, elles y sont repoussées par une force qu'on ne peut apprécier, puisque l'animal et ses tentacules restent complètement immobiles: bientôt la cyclide pénètre dans la cavité buccale, s'y promène en tous sens; on voit parfois de petits mouvements contractiles, selon qu'elle touche telle ou telle portion de la membrane. Enfin, lorsque, dans ses mouvements divers, elle parvient à toucher certain point au centre du corps ovoïde, aussitôt l'animal contracte la membrane annulaire dont nous avons parlé, la rapproche du corps granulé, et par son moyen y fait entrer l'animalcule. Si ce dernier est petit, un faible mouvement de cette membrane suffit pour l'y faire pénétrer, tandis que si cet animalcule est quelque peu résistant par sa grosseur, la contraction est complète, les soies sont rapprochées en faisceau et le pédoncule contracté. A la suite de cette introduction de la proie, un mouvement tumultueux a lieu entre les globules intérieurs, et la Cyclide broyée disparaît aussitôt. Lorsque l'animal englouti est gros et résistant, on le voit se débattre pendant quelque temps au milieu de cette masse, puis disparaître tout-à-coup: j'en ai vu un résister une minute et demie et parcourir en tous sens la cavité du corps. Tant que l'animal ne touche pas la partie au centre du corps oval, la contraction n'a pas lieu; on voit frémir la membrane, mais elle n'exécute pas le mouvement nécessaire à l'introduction de l'animalcule dans le corps. Lorsque le hasard n'amène pas le petit animal à toucher cette partie et à s'y placer, lorsque depuis long-temps il tourmente le Polype par son con-
tact inutile, ce dernier se contracte sur son pédoncule; le vestibule à moitié ouvert, afin de se débarrasser d'un hôte incommode. Si l'animalcule n'est pas du goût du Polype, ou s'il ne pouvait l'ingester à cause de sa grosseur, il se contracte de la même manière pour le chasser du vestibule. Son pédoncule paraîtrait être une prolongation de la membrane générale, car j'ai vu quelques-uns des granules du corps y pénétrer pendant la contraction et en ressortir pendant l'extension; il est formé de plusieurs rangs superposés d'anneaux musculaires qui s'enchâssent les uns dans les autres pendant la contraction.

Le 15 octobre de cette même année, au moment où je l'observai, un de ces *Floscularia* se contracta vivement et toucha, du milieu du corps, un des aiguillons d'une Arcelle scutelliforme (*Arcella aculeata* Ehr.). La membrane en fut déchirée, et il s'écoula une partie de la substance intérieure, avec un certain nombre de granules colorés qui y sont mêlés. Ce Polype resta un moment demi-épanoui, courbé légèrement, la partie convexe du côté blessé, puis peu-à-peu la déchirure se ferma, et l'animal reprit toutes ses allures habituelles. Cet accident heureux me fit assister à la sortie d'une portion de la substance intérieure, telle que je l'apercevais à travers les parois, et que je suivais du dedans au dehors, conservant toujours sa même apparence.

Près de ces *Floscularia*, on voit souvent des corps ovoïdes assez gros, que M. Ehrenberg désigne comme des paquets d'œufs. J'ai long-temps cherché à m'assurer de la nature de ces corps; je les ai vus se former peu-à-peu de la masse et dans la masse granulée du corps, et sortir par une ouverture latérale postérieure, qu'on ne peut voir qu'au moment de l'expulsion. Ces corps ne restent point attachés à l'animal; ils sont immobiles dans le voisinage, et ne s'attachent aux autres corps qu'à cause de leur état glutineux. Il ne se fait aucun travail dans leur intérieur: ils restent complètement dans le même état pendant quelque temps, puis on cesse de les retrouver. Voulant m'assurer de la cause de cette disparition, j'en ai suivi quelques-uns tout le temps nécessaire pour les voir disparaître. Après plusieurs jours d'existence, je les vis s'amincir, puis bientôt après
s'échancrer dans une de leurs parties; arrivés à ce point d'altération, la dissolution complète ne se fait plus long-temps attendre, et on ne voit à leur place qu'un amas informe dont les parties n'ont plus de solidarité. N'ayant vu aucun mode de déjection, je suis porté à regarder ces corps comme des paquets d'excréments; cependant, comme il se pourrait que leur décomposition sous le microscope provint de leur emprisonnement dans une seule goutte d'eau, je pense qu'il est nécessaire de recourir à de nouvelles observations pour décider de leur nature.

EXPlication des figures de la planche 4.

La figure 1ère représente l'espèce de Polype que je trouvai en 1832, et que je ne retrouvais plus depuis. La figure a représente la Floscularia, que je trouvai dans ce même fossé, où j'avais trouvé le Polype précédent: elle est représentée dans son épanouissement. La figure 3 est la même Floscularia dans l'état contracté.

Recherches sur la présence de l'urée dans les différentes parties du corps des animaux autres que l'urine.

Par M. R. F. Marchand. (1)

§ 1. Sur la présence de l'urée dans le sang à l'état normal.

Une question importante à résoudre pour la physiologie, est celle de savoir si, dans l'organisme animal, les organes sécréteurs forment les substances qu'ils sécrètent, ou bien s'ils les isolent seulement du sang où elles existaient déjà toutes formées. Cette dernière opinion a été adoptée par la plupart des chimistes, en tête desquels il faut ranger M. Chevreul; et, de-

(1) Trad. de l'allemand, et tirées du journal de Erdemann Für Prekische Chemie, B. xi s. 449.
puis que MM. Prévost et Dumas ont démontré la présence de l'urée dans le sang après l'extirpation des reins, elle s'est appuyée surtout sur l'histoire de la sécrétion urinaire. Cependant les physiologistes soutenaient l'opinion contraire, et cherchaient à combattre les chimistes avec leurs propres armes en leur demandant de démontrer la présence de l'urée dans le sang sans extirpation préalable des reins. MM. Mitscherlich, Gmelin et Tiedemann se sont occupés de ce sujet en dernier lieu, et, après s'être assurés qu'on peut reconnaître la présence de l'urée dans le sang, ils ont recherché cette substance dans dix livres de sang de vache, mais sans pouvoir en constater la présence; du reste, ils ne spécifient pas si leur expérience a été faite sur du sang artériel ou sur du sang veineux.

Les autorités que je viens de citer ne peuvent laisser aucun doute sur l'exactitude des résultats énoncés, et je n'aurais pas entrepris à mon tour des recherches à ce sujet, si je n'avais pensé que je pourrais modifier la marche suivie par mes devanciers. MM. Prévost et Dumas pensent que si l'on ne découvre pas l'urée dans le sang à l'état normal, cela dépend de ce que le travail sécrétoire étant continu, l'urée ne se trouve qu'en petite quantité dans le sang, et peut alors échapper facilement à l'observation du chimiste. Il m'a donc paru nécessaire de faire l'expérience de manière à satisfaire aux deux conditions suivantes : 1° tirer à un animal, dans le temps le plus long possible, la plus grande quantité possible de sang; 2° le tirer du vaisseau situé le plus près possible des reins. Du reste, quoique tout le sang ne traverse pas les reins, mais continue sa route dans l'aorte descendante sans avoir été dépouillé de son urée; il est évident que la quantité absolue d'urée contenue dans ce liquide doit être moins considérable au-dessous qu‘au-dessus de l'origine des vaisseaux rénaux.

L'expérience a été exécutée de la manière suivante: on a ouvert à un chien grand et bien portant l'abdomen du côté gauche; on a adapté dans l'aorte, à peu-près un demi-pouce au-dessus de l'origine des artères rénales, une canule en laiton assez étroite; puis on a pratiqué une ligature autour de l'aorte, au-dessous de ces vaisseaux, de sorte que tout le sang de cette
artère a été forcé de s'écouler par la canule. Après une heure environ, l'animal est mort, et le sang ainsi obtenu pesait à-peu-près trois livres. Mais en faisant l'opération, une hémorragie avait eu lieu. On a débarrassé le sang de sa fibrine en l'agitant fortement avec des pierres; la fibrine a été lavée avec de l'alcool, on a ajouté cette dissolution alcoolique au reste du sang, et le tout a été évaporé au bain-marie; puis on a recherché la présence de l'urée dans ce liquide d'après le procédé de MM. Mitscherlich, Gmelin et Tiedemann. Cependant je n'ai pu en découvrir aucune trace, quoique des expériences préalables m'eussent fait voir qu'on en pouvait démontrer dans le sang, même \( \frac{1}{8} \).

Il me paraissait curieux de constater quelle est la substance qui nous empêche de découvrir la présence de l'urée dans le sang, renfermant moins de \( \frac{1}{8} \) de cette matière. Je pensai d'abord à l'albumine, qui, par sa coagulation, doit empêcher la séparation de l'urée, et, pour m'en assurer, j'ai fait un mélange de 200 grains de sérum et de 1 grain d'urée; j'ai évaporé le liquide au bain-marie, et j'ai ensuite séparé de l'urée par le procédé ordinaire. Mais quoique j'aie opéré avec toutes les précautions possibles, je n'ai pu obtenir que \( 0^{0},2 \) d'urée. Il est difficile d'expliquer ce qu'est devenu le reste de l'urée; on ne peut pas admettre qu'elle se combine chimiquement avec l'albumine ou avec les sels qui se trouvent dans le sang, et dont la quantité est très peu considérable; de sorte que si même une combinaison pouvait avoir lieu, la perte qui en serait résulté n'aurait pu être à beaucoup près aussi grande. J'ai pris ensuite 12 grains de fibrine fraîche; je l'ai traitée par l'éther pour séparer la matière grasse qui lui adhère, puis je l'ai fait macérer dans l'acide acétique et je l'ai dissoute dans de l'eau bouillante. J'ai ajouté au liquide ainsi obtenu \( 0^{0},5 \) d'urée, et je n'ai pu en retirer ensuite que \( 0^{0},25 \). Cette perte est très considérable, et doit provenir en partie d'une réaction que l'acide acétique a exercé sur l'urée. Enfin j'ai étudié la manière de se comporter de l'urée envers la matière colorante, et, pour cela, j'ai mélé 10 grains de matière colorante desséchée à \( 40^{0} \) avec \( 0^{0},5 \) d'urée, et j'ai dissous le tout dans l'eau, en chauffant la dissolution jusqu'à \( 70^{0} \) ou \( 80^{0} \); elle s'est alors coagulée. J'ai séparé de
MARCHAND. — *Sur la présence de l'urée dans le sang.* la dissolution filtrée 64,28 d'urée, et des eaux de lavage du coagulum encore 64,12, ce qui nous démontre que la matière colorante est de tous les principes du sang celle qui retient le moins d'urée.

Ces expériences nous démontrent que c'est sans contredit l'albumine qui embarrasse principalement dans la recherche de l'urée dans le sang, et une autre expérience que j'ai entrepris a confirmé cette opinion. Ainsi, dans les liquides hydropiques dans lesquels j'ai pu découvrir la présence de l'urée, la quantité d'albumine n'excédait pas 3 à 4 pour cent ; mais quand, dans un autre cas, cette quantité s'est élevée à 14 pour cent, je n'ai pu découvrir des traces d'urée ; cependant ce liquide ne contient pas les autres principes constituants du sang qui dans ce liquide s'opposent à la constatation de l'urée : il contient, à la vérité, des sels ; mais il est impossible d'attribuer à ceux-ci une si forte réaction.

Malgré ces résultats négatifs, on est bien porté à admettre la préexistence de l'urée dans le sang, et cela d'autant plus qu'un calcul simple nous prouve combien les quantités d'urée dans ce liquide peuvent être minimes, de sorte qu'il paraîtrait, en effet, presque impossible de découvrir sa présence dans le sang à l'état normal. Pour faire ce calcul, prenons les données que nous fournir l'homme, et qui ont été les mieux constatées. L'urine de l'homme contient généralement 3 pour cent d'urée ; si on admet qu'un homme sain émet 3 livres d'urine (quantité déjà bien considérable), il émet pendant vingt-quatre heures à-peu-près une once et demie d'urée. Il est nécessaire que toute l'urée qui se forme dans l'économie soit séparée, sans quoi elle s'accumulait quelque part, et notamment dans le sang, comme cela s'observe dans certaines maladies. Ainsi pendant vingt-quatre heures il se forme une once et demie d'urée ; rien ne nous prouve que la formation ne se fasse pas régulièrement et qu'elle soit plus forte dans un temps de la journée que dans

(1) La promptitude avec laquelle le sang se débarrasse des substances qui lui sont étrangères est démontrée par la présence de cyanose, de fer et de potassium jaune dans l'urine, quelques minutes après l'avoir pris ; il n'y a rien d'étonnant si l'organisme éloigne l'urée qui lui est étrangère aussi vite que le sel cité.
un autre. On pourrait croire qu'après avoir pris des aliments, la formation de ce corps devrait se faire plus activement; mais je prouverai plus bas qu'il n'existe aucun rapport entre les deux phénomènes de la digestion et de la formation de l'urée. Si, par conséquent, dans les vingt-quatre heures il se forme dans toute la masse du sang une once et demie d'urée, lesquels sont continuellement séparés, au moins en grande partie, il ne peut se trouver dans toute la masse du sang pendant une heure que la 24e partie de cette once et demie. Si on admet que, terme moyen, l'homme à 20 livres de sang, ce qui est ordinaire le cas, on voit qu'une livre contiendra pendant vingt-quatre heures le 20e de l'once et demi d'urée; pendant une heure, 
\[
\frac{17}{20} = \frac{1}{8} 
\]
de cette même quantité, c'est-à-dire le \( \frac{1}{18} \) d'une once. Si on se procure du sang au moyen d'une saignée qui ne dure pas un quart d'heure et qui nous donne une livre de sang, on voit donc que cette livre contient seulement \( \frac{1}{18} \) d'once d'urée ou la \( \frac{1}{18} \) partie du sang employé, et on voit par conséquent en même temps qu'elle doit échapper à la recherche des chimistes. Du reste, lors même que toutes ces données seraient entachées d'erreurs, et qu'on trouverait des moyens d'éviter les obstacles embarrassants, il est clair qu'il sera encore bien difficile de ramener la proportion de \( \frac{17}{20} \) à la proportion de \( \frac{1}{18} \), laquelle n'est pas encore sans difficulté pour l'expérimentateur.

L'impossibilité de découvrir la présence de l'urée dans le sang se présentant elle-même à priori (1), il paraissait donc tout-à-

(1) Le calcul de M. Marchand aurait en effet pour résultat d'éloigner, pour bien long-temps au moins, la pensée de rechercher directement l'urée dans le sang à l'état normal, puisqu'on ne pourrait espérer de le faire avec succès qu'à la condition de posséder des moyens de recherches cent cinquante à deux cents fois plus délicats que ceux que la science met aujourd'hui entre les mains des observateurs.

M. nous ne croyons pas qu'il en soit ainsi, et les raisonnements qui précédent n'ont conduit M. Marchand à cette fâcheuse conclusion, que parce qu'ils renferment, ce nous semble du moins, une confusion dans les termes. Il se forme pendant vingt-quatre heures une once et demie d'urée; et le rein étant supposé un organe dont l'action est constante, la quantité formée sera proportionnelle au temps, on en pourra conclure qu'il se forme pendant une heure \( \frac{17}{24} \) d'once et demie d'urée; mais il se trouve n'est point synonyme de il se forme et il se trouve pendant, est une locution dont nous avons ne pas bien comprendre la signification ni les conséquences mathématiques dans le cas, actuel. Nous voyons bien moins encore comment M. Marchand part de là, pour s'appuyer comme il le fait sur ce principe, auquel rien de
fait inutile de répéter l'expérience mentionnée plus haut, et qui exige une vivisection cruelle, si on n'avait pas vu bien souvent que l'expérience donne un résultat bien différent de celui auquel on s'attendait. J'ai fait usage encore d'un autre moyen pour découvrir la présence de l'urée, c'est en traitant des grandes quantités de sang l'une après l'autre avec la même menstrue, espérant par là augmenter progressivement la masse de l'urée. Mais le résultat n'a pas répondu à mon attente, ce qui dépend, non-seulement de la petite quantité de cette substance, mais aussi de ce que les substances étrangères dont elle est entourée empêchent l'action des réactifs.

Il me reste à prouver que la séparation de l'urée se fait d'une ce qui précède ne semble conduire, que la quantité d'urée contenue dans le sang tiré d'une artère, sera proportionnelle au temps qu'aura duré la saignée.

Cette question toutefois ne nous semble pas être de celles qui doivent échapper nécessairement aux raisonnements mathématiques; mais nous sommes loin de posséder les éléments précis qui devraient servir de point de départ à un semblable calcul, et le seul but que nous puissions nous proposer dans l'état de choses où nous sommes placés, ce serait de déterminer, si, comme le croit M. Marchand, les données actuelles que possède la science nous permettent de conclure que l'urée est dans le sang en quantité assez petite, pour qu'un chimiste doive renoncer à l'y chercher, soit par les procédés que l'on possède dès aujourd'hui, soit à l'aide de perfectionnements que la science ne dût pas désespérer d'atteindre.

Le cœur bat une fois par seconde, ou 86,400 fois par jour. Or, d'après l'opinion de M. Poiseuille, on peut regarder la quantité de sang lancée à chaque onde, premier élément dont nous ayons besoin, comme ne dépassant pas de beaucoup 172 once. L'aorte peut donc être considérée comme un tuyau de conduite, distribuant environ 43,000 onces de liquide par jour dans les diverses artères qui y prennent naissance. C'est dans la portion de ce liquide seulement qui traverse les artères rénales et les reins, qu'est puisée l'once et demie d'urée que rend un homme en un jour. Or, la répartition qui se fait entre les artères est en raison composée de leur surface de section, et de la vitesse qu'y possède le sang, deux éléments qui nous manquent absolument. Admettons donc comme un terme assez probable, et auquel d'ailleurs rien ne répugne dans l'état actuel de la science, que la part des artères rénales, soit d'environ 1/8 ou 1/10 de la quantité totale du sang, ce qui semblera probablement une estimation assez élevée, si l'on fait attention au nombre total des artères du même degré qu'elles et à l'importance des sept ou huit principales. Ce seraient donc environ 5,000 onces de sang qui traverseraient les reins dans un jour. Mais un élément nous manque encore, aucun fait ne nous permet de dire si le sang en traversant les reins est dépouillé complètement d'urée, ce qui n'est pas probable, ou s'il perd telle ou telle fraction seulement de la quantité qui y est contenue. Toutefois, soit le rapport de la quantité enlevée à la quantité totale, en lui assignant des valeurs arbitraires, en supposant que ce soit la moitié, le quart, etc., nous arriverons à nous faire une idée générale de ce que peut être le rapport de l'urée au sang dans l'état normal. Le tableau suivant résume tout à-la-fois les hypothèses différentes que nous avons été
manière uniforme, et qu'elle est indépendante de l'influence de la digestion. J’ai examiné l’urine qui a été émise la nuit et peu de temps après que l’individu se fût levé du lit. J’y ai trouvé jus-

obligés d’admettre, et les résultats auxquels cette manière de raisonner le problème en question nous conduit :

$Q$ la quantité de sang lancée à chaque ondée ;

$n$ le nombre d’ondées dans un jour ;

$\frac{1}{R}$ le rapport de la quantité de sang qui s’écoule par les artères rénales, à la quantité to-
tale qui sort du cœur ;

$\frac{1}{r}$ le rapport de la quantité d’urée sécrétée à la quantité totale contenue dans le sang de l’aorte ou des artères rénales ;

$q$ la quantité d’urée sécrétée dans un jour ;

$x$ le rapport général de l’urée au sang dans l’état normal ;

On aurait :

$$x = \frac{qRr}{Qn},$$

ou, si l’on calcule d’abord la quantité de sang, $\frac{Qn}{r}$ qui passe par l’artère rénale dans un jour, soit $Q'$, cette quantité

$$x = \frac{qr}{Q'},$$

Nous avons admis

$$Q' = 5000 \text{ onces}$$

$$q = 1 \text{ once } \frac{1}{2};$$

Faisons successivement

$$\frac{1}{r} = 1; \quad \frac{1}{r} = \frac{1}{2}; \quad \frac{1}{r} = \frac{1}{3}; \quad \frac{1}{r} = \frac{1}{5}; \quad \frac{1}{r} = \frac{1}{10},$$

il viendra

$$x = \frac{1}{3300}; \quad x = \frac{1}{1650}; \quad x = \frac{1}{1100}; \quad x = \frac{1}{660}; \quad x = \frac{1}{250}.$$

Ainsi dans le cas où la sécrétion de l’urée serait complète, ce qui est le cas le plus défavora-
ble, le rapport serait encore $\frac{1}{3300}$, mais il serait $\frac{1}{660}$ si la sécrétion ne s’exerçait que sur
le cinquième de la quantité totale pendant le temps si court que le sang emplie à traverser
les capillaires rénaux.

Ce sont des nombres qui encore une fois n’ont aucune valeur réelle en eux-mêmes, puisque nous sommes fondés sur des hypothèses dont aucune n’est une donnée positive de la science; mais d’un autre côté nous ne connaissons non plus aucun fait qui prouve que
l’une quelconque des valeurs hypothétiques que nous avons assignées aux divers éléments de
notre travail soit trop favorable; et si l’on admet les principes sur lesquels nous sommes
fondés, si les conséquences que nous en avons déduites paraissent rigoureuses, on conclura
comme nous de ce qui précède, que rien de ce qui est actuellement dans la science ne permet
de déclarer impossible de reconnaître la présence de l’urée dans le sang à l’état normal.

L. D.
qu'à 4 pour cent d'urée, proportion qui est plus forte que celle existant ordinairement dans ce liquide. L'urine émise deux heures après le repas, et sur laquelle la digestion pouvait par conséquent influer, ne contenait que 3,2 pour cent d'urée.

La cause pour laquelle l'urine émise le matin est plus riche en urée dépend probablement de la transpiration plus active des parties aqueuses pendant la nuit. Un autre fait à l'appui de l'opinion émise plus haut nous est fourni d'une manière indirecte par une expérience de Lassagne (1) : ce chimiste ayant examiné l'urine d'un fou qui n'avait rien mangé ni bu pendant dix-huit jours, l'a trouvée composée des mêmes principes que celle d'un homme sain. Je n'ai pas eu l'occasion de répéter cette expérience, mais il serait à désirer qu'elle ne fût pas négligée par des médecins si un cas analogue venait à se présenter.

Cette expérience nous démontre avec la plus grande certitude que l'urée ne se forme pas immédiatement des aliments, mais de la substance déjà formée du corps animal auquel est soustraite ainsi une quantité d'azote qui est ensuite remplacée par un aliment contenant de l'azote; aussi voit-on, d'après les expériences de Magendie (2), Macaire et Marcet (3), Lassagne et Iwart (4), et Tiedemann et Gmelin (5), que le défaut d'aliments azotés détermine d'abord une maladie et ensuite la mort.

Par conséquent, si nous ne pouvons pas admettre que l'émission de l'urée soit activée par la digestion (6), il faut bien conclure que celle-ci se fait régulièrement. (7)

(1) Journal de chimie médicale.
(2) Annales de chimie. 1816. sept. p. 66.
(4) Annales de chimie et physique, août 1833.
(5) Digestion, t. ii., p. 183.
(6) Il y a quelque temps, M. Morin (Ann. de chim. et de phys. t. 44), a émis l'opinion que l'urée ne préexiste pas dans l'urine, mais qu'elle se forme aux dépens d'une substance qu'il appelle uride et de l'acide azotique. Suivant M. Morin, cet urile se trouve dans l'urine combinée, au chlore. Si cela avait lieu, en effet, la présence de l'urée dans l'urine ne pourrait pas être démontrée; mais ni la chimie ni la physiologie ne doivent se laisser arrêter dans leur marche par des hypothèses aussi arbitraires.
(7) L'auteur ne tient pas compte ici des belles expériences de M. Chossat sur la sécretion urinaire, expériences qui démontrent les rapports intimes qui existent entre l'alimentation et cette sécrétion. (R.)
§ II. Recherche de l’urée dans le sang altéré par la maladie.

La cause de la présence de l’urée dans le sang des malades ou mieux son accumulation en quantité assez considérable pour devenir appréciable à nos analyses, peut dépendre de deux circonstances: 2° d’une formation excessivement active de cette substance ; 1° de la suppression de son émission ou séparation. On n’a pas de certitude sur l’existence de cas dus à la première de ces causes. Nous pouvons par conséquent les omettre et nous ne nous occuperons que de ceux dus à la seconde cause.

Le cas le plus simple que nous allons prendre en considération, c’est l’exirpation de reins, expérience qui a été faite et décrite par Prévost et Dumas (1), Vauquelin et Ségalas (2), Metscheslitch, Tiedeman et Gmelin (3). Les trois séries d’expériences, faites par ces savans, ayant donné les mêmes résultats, il aurait été inutile de les répéter, si je n’avais espéré pouvoir en rendre les résultats encore plus évidents, et, dans cette vue, j’ai cherché principalement à empêcher la mort prompte de l’animal soumis à l’expérience, et j’ai été assez heureux pour arriver à ce but, en ne pratiquant pas l’exirpation des reins, mais en déterminant la gangrène des nerfs de ces organes par la ligature. Cette manière de procéder a plusieurs avantages. L’opération est plus facile à exécuter : elle entraîne une perte de sang moins considérable. Elle est moins douloureuse, de sorte que l’animal est moins affaibli, et reste plus long-temps en vie. J’ai choisi pour l’expérience un mouton fort et bien portant, auquel la ligature a été pratiquée à-la-fois aux deux reins, et, dès que je pus présumer admettre que la mortification était devenue complète, les ligatures furent retirées, afin de troubler le moins possible l’état normal.

Les blessures furent réunies par des sutures, et bientôt elles

(1) Annales de chimie et de physique, 2e série, t. xxiii.
(2) Journal de physiologie de Magendie, tome ii.
(3) Poggendorff’s Annalen xxxi.
commencèrent à se cicatriser. L'animal paraissait très mal à son aise; mais cependant, le jour de l'opération même, il mangea du pain blanc et du lait. Il a vomi à plusieurs reprises (comme dans les autres cas) un liquide chargé de beaucoup de bile. Le second jour, il était bien faible, mangeait cependant: il rendait des excréments aqueux et vomissait de temps en temps; néanmoins il continuait à manger. J'ai réussi à prolonger de cette sorte la vie de l'animal jusqu'au quinzième jour. Il était alors bien affaibli; les vomissemens devenaient plus fréquens. Il paraissait bien près de la mort: le pouls, qui jusqu'alors était accéléré, devenait plus faible et lent. Comme il importait d'avoir la plus grande quantité de sang, on a ouvert alors les jugulaires, et fait périr l'animal par hémorragie. Sa mort est arrivée après l'émission de près d'une livre de sang (1). Ce sang a été soumis à l'analyse: on en a pesé avec exactitude quatre cents grains, qu'on a fait évaporer au bain-marie jusqu'à siccité, et, pour en séparer l'urée, on a suivi en général le procédé indiqué par Mitscherlich, Gmelin et Tiedeman. J'ai obtenu ainsi un peu plus de deux grains d'urée. Ensuite j'ai recherché l'urée dans le liquide vomi par l'animal, et principalement dans celui qui a été rendu pendant les derniers jours, supposant qu'il devait être plus riche en urée que ceux rendus les premiers jours. Soixante grains de ce liquide, traités par l'acide azotique, donnèrent des signes si certains de l'existence de l'urée, que je n'ai pu douter un seul instant de sa présence. J'ai trouvé à peine une trace de liquide dans la vessie de l'animal. Pendant les quinze jours qu'a duré l'expérience, il n'a même pas sécrété de l'urine, ce qui prouve que la mortification des reins a été complète.

L'idée de faire l'expérience à la manière décrite m'a été suggérée par MM. Müller et Peipers, qui ont déterminé la gangrène des nerfs des reins par la ligature, et ont empêché de la

(1) Je ne doute pas qu'on puisse prolonger la vie de l'animal bien plus long-temps; mais, n'étant pas bien exercé dans les vivisections, l'opération n'a pu être faite avec toutes les précautions désirables: la fièvre qui est résultée de l'opération a contribué pour beaucoup à diminuer les forces de l'animal.
sorte la sécrétion de l'urine; mais ces messieurs n'ont pas examiné le sang. (1)

Dans la pathologie humaine, nous rencontrerons des cas pareils, quoique des changemens aussi grands que ceux qui résultent d'une telle opération ne puissent pas avoir lieu. Les cas d'une ischurie complète ne sont pas très rares, et de temps en temps, quoique moins souvent, on a l'occasion d'observer la maladie de Bright; enfin le choléra asiatique, au plus haut degré de son développement, est accompagné d'une suppression complète de la sécrétion de l'urine. Quand je m'occupais de ces recherches, cette maladie était très répandue ici à Berlin, j'ai profité de cette occasion pour répéter les expériences de Herman de Moscou (2) et de Wittstock, de Berin (3), qui, comme on sait, ont donné un résultat négatif. Je dois des remerciemens à mon ami, M. le docteur Naget, employé à l'hôpital des cholériques, pour l'appui qu'il a bien voulu me prêter; car il a même pratiqué la partie la plus difficile de cette expérience. L'analyse a été faite par le procédé ordinaire. On a soumis à l'examen une livre de sang d'un malade affecté de chaleur, qui souffrait depuis plusieurs jours d'une ischurie; mais, malgré tous les soins qu'on a employés, on n'a pu apercevoir que des traces bien douteuses de la présence de l'azotate d'urée. On a répété l'expérience avec le sang d'un autre malade du choléra, qui souffrait aussi depuis plusieurs jours d'une ischurie, et on a obtenu des cristaux bien distincts d'azotate d'urée, qui ne laissait aucun doute dans l'esprit sur leur constitution.

Je ne révoque pas en doute pas de la présence de l'urée dans le sang, dans l'affection de reins de Bright, comme cela a été annoncé par les chimistes et médecins anglais.

Il a été dit plus haut que c'est principalement la coagulation de l'albumine, qui empêche de constater la présence de l'urée; il fallait donc trouver un moyen pour précipiter l'albumine, et mettre ainsi l'urée dans des circonstances telles que sa présence puisse se manifester. Le chlore se présente d'abord à l'esprit.

---

(1) Archives de physiologie de Muller. 1836.
(2) Poggendorff, t. xxi, p. 161.
(3) Ann. de Poggendorff, t. xxiv, p. 509.
Si on fait passer un courant de chlore dans une dissolution qui contient de l'albumine, celui-ci est précipité en légers flocons. Mais malheureusement le chlore réagit aussi sur l'urée et la décompose en azote, en carbonate et chlorhydrate d'ammoniaque.

§ III. Présence de l'urée dans d'autres liquides pathologiques du corps humain.

Les premières recherches détaillées, qui ont été faites à ce sujet avec une exactitude scrupuleuse sont celles de Nysten, qui ont été présentées à l'Académie des Sciences. Son mémoire, présenté en 1811, est resté sans rapport et tout-à-fait oublié; enfin, retrouvé par les rédacteurs du Journal de chimie médicale, il a été imprimé en extrait dans ce recueil (1). Une année avant la publication de ce travail (1836), j'ai examiné le liquide hydropique d'une femme affectée d'ascite, chez laquelle la rétention d'urine n'était pas complète, et, malgré la quantité notable d'albumine que le liquide contenait (2), j'y ai trouvé 0,42 p. °/o d'urée. Dans deux autres cas, j'ai trouvé de l'urée accompagnée toujours d'albumine; mais, dans un quatrième cas, il m'était impossible de trouver l'urée, probablement à cause de la quantité considérable d'albumine que le liquide contenait. Nysten, qui a aussi examiné le liquide hydropique (3), y a trouvé, outre l'urée, de l'acide urique. J'ai recherché vainement ce dernier corps; mais je dois dire que je n'ai fait cette observation qu'une seule fois.

Nysten a découvert la présence de l'urée, non-seulement dans les liquides hydropiques, mais aussi dans les liquides qui ont été rendus par des individus frappés d'une ischurie complète (4). Les cas sont bien rares. Je n'ai pas eu occasion de répéter l'expérience de ce physiologiste: le résultat qu'il a obtenu me paraît cependant bien probable, et présente beaucoup d'analogie avec celui de l'expérience sur la mortification des nerfs des reins du mouton, que j'ai cités plus haut.

(1) Journal de chimie médicale, juin 1837, p. 257.
(2) Annales de Poggendorf, t. xxxvii, p. 357.
(3) Il a été aidé dans ses analyses par Barruel le père.
(4) Recherches de chimie et de physiologie.
On peut présumer que l'on trouvera de l'urée dans les excrémens et les liquides vomis par des personnes atteintes de choléra et chez lesquelles la sécrétion pathologique de l'urine est arrêtée; mais cette opinion n'est pas confirmée par les expériences faites avec beaucoup de soin de Wittstock et d'Hermann. Wittstock dit cependant avoir trouvé des traces d'acide urique dans les excrémens; mais on ne sait jusqu'à quel point on peut compter sur cette observation. L'opinion de M. Hermann, déduite de cette observation, que, pendant le choléra, il ne se forme pas d'urée, me paraît bien hasardeuse. Je ne vois rien d'autre que la quantité du liquide sécrété est si considérable, et la quantité de l'urée si minime que la première masque la seconde. J'ai trop de confiance dans les recherches de M. Hermann pour douter de leur exactitude: aussi, quoique le retour du choléra à Berlin m'ait présenté l'occasion de répéter cette expérience désagréable et dégoûtante, je n'ai pas cru nécessaire d'y revenir; du reste, je n'ai pas voulu m'exposer à la contamination. Avant que l'uréène fût découverte et que l'on eût appris à constater sa présence quand elle se trouve en petite quantité, on a observé que la sueur émise par les individus atteints d'ischurie et de maladies analogues, sentait fortement l'urine. Quoique la sueur possède en général l'odeur ammoniacale, et que, par conséquent on ne puisse pas admettre de suite que c'est l'urée qui en est la cause, on conçoit bien la possibilité d'une pareille sécrétion lorsque l'urée se trouve en excès dans le sang; car, dans l'ictère, la peau sépare aussi du sang des matières qui ne sont pas du domaine de sa sécrétion normale.

Dans beaucoup de cas cependant, l'urine, amoncelée dans la vessie, est ramenée de nouveau dans le torrent de la circulation par l'exosmose; mais ces cas ne peuvent pas être pris en considération ici, parce qu'ils dépendent d'un phénomène accidentel, qui n'a rien de commun avec la formation de l'urée, et il y a sans contredit des cas où de pareilles sueurs urinéuses apparaissent pendant que la sécrétion de l'urine est arrêtée.

Nos données sur la composition chimique de la sueur à l'état pathologique, et en général nos notions sur tout ce qui concerne la théorie de la transpiration de la peau sont bien incer-
taines, quoique l'appréciation exacte de ces fonctions fût d'un haut intérêt tant pour la physiologie que pour la médecine pratique ; aussi, vu l'état de cette partie de la science, aurait-il été inutile de nous arrêter plus long-temps sur ce cas particulier.

§ IV. Sur la présence du sucre de diabète dans le sang des malades affectés du Diabètes mellitus.

D'après la plupart des chimistes, l'urée disparaît de l'urine dans la maladie rare et presque incurable connue sous le nom de diabète mellitus, et se change en sucre de raisin ; cependant, d'après M. Baruel l'aîné, l'urée paraît ne pas disparaître complètement. Les expériences ultérieures décideront probablement si le fait annoncé par M. Baruel est exact, ou bien si le résultat qu'il a obtenu ne dépendait pas de ce que la maladie n'était pas encore complètement développée. Jusqu'à présent, nous devons admettre que toute l'urée se change en sucre de diabète, et, de même qu'on n'est pas d'accord sur la question de savoir si l'urée préexiste dans le sang normal, on ne s'accorde pas relativement à celle du sucre dans le sang des diabétiques. J'ai eu moi-même l'occasion de recueillir des données sur ce point ; mais comme ce sujet a des rapports intimes avec celui que je traite, je crois devoir rassembler ici tous les faits connus.

Dobson et Rollo (1) sont les premiers qui ont annoncé avoir trouvé du sucre dans le sang ; mais Nicolas et Guederville (2) ont nié ce fait. Vauquelin et Ségalas ont également cherché en vain à séparer le sucre du sang tiré de la veine d'une femme dont l'urine contenait 15 pour cent de sucre. Wollaston, au contraire, dit avoir trouvé $\frac{15}{17}$ de sucre dans le sérum du sang. Les autres données sur ce sujet sont si vagues et si indécises qu'on peut passer outre, excepté toutefois deux observations qui méritent plus d'attention, et qui ont été faites dans ces derniers temps. Une de ces observations est due à Ambrosiani, pharmacien en

---

(1) Gehler's journal Band, i, p. 343;
(2) Journal de chimie médicale, tome i, page 1.
chef de l'hôpital de Pavie (1), qui a examiné le sang et l'urine d'un diabétique guéri plus tard par le professeur Carreliani au moyen de la créosote : il a chauffé légèrement le sang (dont on avait séparé la fibrine) pour le coaguler ; il a filtré, ajouté de l'acétate de plomb, séparé l'excès de plomb par l'hydrogène sulfuré, il a fait bouillir la liqueur filtrée avec un blanc d'œuf pour la clarifier, l'a évaporée jusqu'à consistance de sirop, et il a retiré de ce sirop, après quelques semaines, des cristaux de sucre qui, mis en contact avec la levure de bière, ont fermenté. Une partie (theil) de sang veineux lui a donné 9 grains de sucre cristallisé.

Maitland a annoncé un fait pareil, observé sur le sang d'un malade qui émettait une livre et demie de sucre par jour ; cinq onces d'un sérum laiteux provenant de huit onces de sang lui ont fourni du sucre qui ressemblait tant au sucre de diabète, qu'on ne pouvait pas douter de l'identité du premier avec le dernier. Le malade a été saigné quand la quantité de sucre diminuait dans l'urine.

Il est inutile d'insister sur la ressemblance frappante qui existe entre la présence de l'urée et du sucre dans le sang. Dans le diabète, le sucre remplace l'urée ; ainsi tout ce qu'on a dit au sujet de ce dernier peut s'appliquer aussi au sucre. Par les raisons citées plus haut, il faut aussi des circonstances toutes particulières pour que le sucre soit retenu par le sang et pour qu'on puisse constater sa présence par suite de son accumulation, comme cela a lieu aussi avec l'urée, et en outre, il faut un concours tout particulier de circonstances pour que, malgré la séparation considérable de cette matière par les reins (ce qui est un fait caractéristique de la maladie), il en sorte une quantité si grande encore. Dans le cas cité par Maitland, le sucre diminuait dans l'urine ; c'est pourquoi sa quantité a peut-être augmenté dans le sang.

Nos connaissances en chimie animale sont si peu étendues, que chaque fois que cette science nous fait faire un pas nouveau dans les recherches physiologiques ou pathologiques,

(1) Annal. univers. di Omodei, 1831 (août et mai).
nous devons examiner avec soin si elle ne nous égare point, et si nous pouvons adopter avec confiance les résultats qu'elle nous fournit sans risquer d'introduire dans le domaine des faits d'inutiles hypothèses. Je ne puis cependant quitter ce sujet sans émettre une opinion sur la ressemblance de deux espèces de diabète, le mellitus et le insipidus. Le phénomène principal que nous observons dans les deux maladies, c'est l'émission énorme de l'urine. Toutes les deux se caractérisent par l'absence de l'urée ; la différence est que, dans un cas, nous trouvons du sucre dans l'urine, et que dans l'autre nous n'en trouvons pas. On n'a pas examiné, jusqu'à présent, le sang dans le diabète insipidus. Il serait bien possible que, dans ce dernier, la quantité de sucre qui est sécrété dans le diabète mellitus s'y trouve retenue, soit à l'état de sucre, ou bien encore à l'état d'urée, et que toute la différence des deux maladies existe dans l'émission de ces substances. Les expériences chimiques décideront la question ; mais malheureusement, pour les exécuter, l'occasion est bien rare, et quand elle se présente elle est souvent négligée.

§ V. Observations générales sur l'action des organes glanduleux.

S'il était permis de tirer des faits mentionnés plus haut des conclusions relatives aux sécrétions des glandes en général, on arriverait aux résultats suivants : Nous connaissons dans l'organisme animal une grande quantité d'organes qui sécrètent, et parmi ces organes, les glandes jouent le rôle principal. La zoochimie explique jusqu'à un certain point les phénomènes qui se passent dans quelques cas, mais le plus souvent ils échappent à notre observation, parce que les sécrétants s'exercent sur des substances dont les caractères chimiques sont, ou si peu connus, ou des matières si différentes, que leur recherche présente les plus grandes difficultés. Les organes qui présentent les conditions les plus favorables des recherches de cette nature sont les reins et le foie. Le principe essentiel de l'urine peut être reconnu, même en petite quantité, là où elle se présente ; c'est pour cette raison que nous la trouvons dans le sang, lorsque la sécrétion est em-
pêchée par une cause quelconque; c'est aussi pour cela que nous la trouvons dans les sécrétions morbides qui s'accumulent en partie dans le corps humain, ou sont expulsées par d'autres voies, lors des maladies rénales ou de celles de tout le système urinaire. Nous trouvons également dans le sang la substance qui remplace l'urée, le sucre, quand même il est sécrété, ce qui vient probablement de ce qu'il se forme en quantité extra-ordinaire, circonstance dont dépend probablement l'amaigrissement terrible des personnes atteintes de cette maladie.

Nous observons les mêmes phénomènes dans les sécrétions du foie. Je ne parlerai ici que d'après les expériences de Tiedemann, Gmelin et quelques autres savans; mais elles ne laissent aucun doute. Nous voyons par ces expériences la présence des parties constituantes de la bile dans le sang, quand sa sécrétion est arrêtée, soit que le foie ne puisse fonctionner à cause de maladie (par exemple, dans l'endurcissement du foie), soit qu'on ait pratiqué une ligature aux canaux hépatiques : on découvre alors avec facilité, dans le sérum du sang, la matière colorante de la bile, qui se distingue par la manière toute particulière dont elle se comporte avec l'acide azotique. On sait aussi que cette substance se rencontre dans l'urine et même dans les autres organes du corps, dans les cas d'ictère. Un autre principe constituant de la bile se rencontre dans le sang, sans, le plus souvent, que l'état de l'organisme soit altéré profondément.

Les recherches de M. Lecanu sur le sang y ont démontré la présence d'un corps gras ressemblant à la cholestérine, et le docteur Denis paraît avoir séparé en outre des autres corps gras une graisse qui est particulière à la bile. On ne peut pas admettre que l'urine et la bile se trouvent toutes faites dans le sang, ces deux liquides n'étant pas des combinaisons chimiques; mais il paraît certain que les parties constituantes de toutes les deux existent déjà dans le sang, et ne sont que séparées par le foie et les reins. Si cela n'avait pas lieu, il faudrait que, dans le cas où les reins et le foie ne peuvent pas fonctionner, d'autres organes se chargeassent de leurs fonctions et qu'ils jouassent le rôle de ces glandes. Il serait bien difficile, surtout dans l'organisme animal, d'indiquer un organe quelconque qui pût les
remplacer, et encore serions-nous obligés d’admettre que cela ne pourrait être qu’un organe glanduleux qui ait la faculté de sécrétion et de séparation ; mais il n’y aurait plus de raison, si cet organe pouvait sécréter l’urine et la bile, de ne pas admettre qu’il ne fonctionne pas simultanément avec les reins et le foie, même lorsque ceux-la fonctionnent.

Les expériences citées plus haut démontrent que la faculté de sécréter l’urine est due à l’action des nerfs des reins, parce que toute sécrétion a cessé après la mortification de ces nerfs. Nous serions obligés d’admettre qu’un autre nerf est en état d’exercer les fonctions du nerf détruit. Mais si nous adoptons une fois une telle manière de voir, nous donnons lieu à une hypothèse qui n’aurait aucune borne, et que nous ne pouvons justifier par aucun fait ; car alors nous pourrions admettre aussi que les nerfs de sensibilité peuvent être remplacés, après leur destruction ou leur paralysie, par les nerfs de la locomotion, fait dont une expérience journalière nous démontrera la fausseté.

Les faits cités à l’appui des opinions émises ne présentent pas cette force qu’on exige à présent dans la physiologie aussi bien que dans les autres sciences naturelles ; cela provient de ce que cette partie de la science est tout-à-fait neuve et qu’elle exige une grande série d’observations et de combinaisons pour expliquer les phénomènes d’une manière rigoureuse et mathématique.

Note sur le développement de l’embryon des Limnées, par M. Pouchet.

(Présentée à l’Académie des Sciences, le 2 juillet 1838.)

(Extrait.)

« I. J’ai reconnu, dit l’auteur, que le vitellus, au moment de la ponte, est composé de six cellules accolées : c’est ce que je prouve par une expérience fondamentale, qui consiste à chauffer légèrement, à l’aide du microscope solaire, un vitellus normal, nouvellement pondu, contenu dans sa coque et sous l’eau ; on le voit immédiatement se gonfler, et chacune de ses six cellules se transformer, sous les yeux de l’observateur, en six vésicules qui s’isolent parfaitement.

« Chacune des six cellules qui forment le vitellus, offre de 4 à 5 centièmes de millimètre de diamètre. Si l’on suit ce qui se passe dans le développement de
l'embryon, on s'aperçoit que de nouvelles cellules se forment bientôt dans les interstices qui séparent les cellules primitives; après vingt-quatre heures, il y en a 15 à 20, et par la dilatation, le vitellus n'offre plus alors que l'aspect d'une framboise. En suivant l'accroissement de ces cellules jour par jour, on voit que bientôt elles acquièrent un diamètre de 8 à 10 centièmes de millimètre, et que ces mêmes cellules, qui ferment d'abord toute la masse vitelline, viennent évidemment constituer le foie, l'ovaire ou le testicule, bien avant que l'intestin apparaîsse et qu'on ne puisse même assigner, en apparence, aucune lacune pour son développement.

« II. Quand on observe, au microscope ordinaire ou au microscope solaire, un vitellus nouvellement pondu, on voit que sous la membrane qui circonscrit ses cellules, il existe des myriades de granules ovoïdes qui s'agitent, se meuvent en présentant des mouvements bien autrement apparemment que les oscillations que M. Brown a observées dans les molécules inorganiques; on serait tenté de les considérer comme autant d'animalcules.

« Au bout de dix à douze heures, ces granules deviennent tout-à-fait immobiles, se déforment et s'agglomèrent, pour constituer une membrane interne qui doit faire partie de la peau.

« L'action de l'opium rend immédiatement ces granules immobiles; quand on les chauffe au microscope solaire, d'abord leurs mouvements deviennent plus intenses, puis après un moment, quand la température de l'eau qui contient l'œuf s'est élevée un peu, tout mouvement cesse sans qu'aucun de ces corps se soit déformé.

« III. Au moment de l'émission de l'œuf, on aperçoit constamment à la surface du vitellus, une vésicule sphérique, translucide (rarement deux), qui s'en détache le second jour de l'émission; cette vésicule, de 2 centièmes de millimètre, contient une vingtaine de granules très mobiles, qui occupent sa partie centrale et non sa circonférence; la mobilité de ces granules cesse quand la vésicule s'est détachée eu vitellus, et erre dans l'albumine plus ou moins déchirée.

« IV. Lorsque le fœtus a acquis une longueur de 60 centièmes de millimètre, on observe, derrière les yeux, deux cavités ovoïdes renfermant chacune six à huit granules d'une couleur violette claire; ils sont plus gros que ceux que l'on remarque primitivement à la surface du vitellus, et encore plus extraordinairement mobiles; ils culbutent les uns sur les autres, et leurs mouvements durent encore un certain temps après que l'on a broyé l'animal, et que les mouvements des couvrent ont cessé.

« V. On a signalé l'existence de cils à la superficie des Lymnées; j'ai reconnu, en outre, qu'il en existe dans la cavité pulmonaire quand elle est formée, et que leurs mouvements y déterminent des courants du fluide albumineux, faciles à observer à cause des débris de la vésicule dont j'ai parlé, et qu'on y voit entrer et sortir en décrivant des circonférences d'un diamètre plus ou moins grand. »
Mémoire sur les Goniatites qui se trouvent dans les terrains de transition du Rhin.

Par M. Ernest Beyrich. (1)

Nous devons à M. Léopold de Buch d’avoir établie une séparation tranchée et précise entre les Ammonites et les Nautilacés (2). Il a fait voir que l’on doit supposer dans les premiers de ces Céphalopodes une organisation essentiellement différente; en effet, le siphon ne perce pas les cloisons, comme dans les Nautilus et les espèces voisines, avec l’unique fonction de fixer fortement l’animal à la coquille; mais, comme un organe très important, il se prolonge entre les cloisons et la coquille, et, semblable à un ligament solide, il entoure l’animal jusqu’à ses extrémités les plus extérieures. On doit considérer les Goniatites comme une division des Ammonites; ils sont les représentants du genre dans les terrains fossilifères les plus anciens, dans le terrain de transition, et dans le terrain houiller. Les Goniatites se distinguent des Ammonites par des cloisons plus simples, qui ne sont pas dentelées comme des feuilles de fleur, et dont les lobes ne suivent point une loi aussi simple ni aussi certaine que celle à laquelle sont soumises les Ammonites des formations plus récentes. Dans quelques espèces en effet, on ne voit pour ainsi dire pas de lobes, et on les prendrait pour des Nautilus, si l’on n’apercevait pas le lobe dorsal, suite nécessaire du siphon dorsal. La plupart des Goniatites n’ont qu’un lobe latéral, qui est tantôt largement arrondi, tantôt anguleux et infundibuliforme, tantôt linguiforme. Quand il existe deux ou un plus grand nombre de lobes latéraux, ou bien ils sont linguiformes, et s’étendent depuis le dos jusqu’à la suture, en augmentant ou diminuant.

(2) Voyez Annales des Sciences naturelles, 1ère série, t. xxi.
IX. Zool. — Août.
d'une manière régulière; ou bien ils présentent une forme irrégulière, sans suivre aucune loi.

Les Goniatites sont très répandus dans les terrains de transition; ils se trouvent en très grande quantité dans les calcaires de transition anciens du Fichtelgebirge; M. le comte de Münster en a décrit un très grand nombre d'espèces de ce gisement (1); et ils remontent à partir de là jusqu'à des couches supérieures du terrain houiller proprement dit, où ils se trouvent, au milieu des débris d'une puissante végétation, presque les seuls et derniers restes du règne animal. Dans le calcaire du Fichtelgebirge, ils se rencontrent avec des Trilobites, des Orthocératites et des Clyménies. Les Trilobites et les Orthocératites remontent jusque dans le terrain houiller; les Clyménies au contraire, très différents des Goniatites par la position du siphon, et qui doivent être regardés comme de vrais Nautilis, n'ont été trouvées jusqu'ici ni dans le calcaire carbonifère, ni dans le terrain de transition moderne auquel on doit rapporter le terrain schisteux du Rhin.

Le grand nombre des Goniatites découverts jusqu'à présent rend nécessaire leur division en groupes naturels. M. de Buch, qui ne connaissait que peu d'espèces relativement au nombre connu aujourd'hui, distingue d'abord les Goniatites en Goniatites à lobes arrondis, et Goniatites à lobes anguleux; puis, dans chacune de ces sections, il sépare ceux à lobe dorsal simple, et ceux à lobe dorsal divisé. Je crois devoir m'écarter de ce mode de classification, attendu que le caractère sur lequel sont fondées les divisions secondaires, celui du lobe dorsal simple ou divisé, me paraît en rapport plus immédiat avec l'organisation intérieure des animaux, et par conséquent d'une importance incomparablement plus grande que la différence entre les lobes arrondis et les lobes anguleux, qui ne peut pas être établie d'une manière rigoureuse. On peut distinguer très naturellement, d'après la forme et le nombre des lobes latéraux, parmi les Goniatites à lobe dorsal simple quatre sections, et parmi ceux à

(1) Voyez Annales des Sciences naturelles, 2e série, t. 11.
lobe dorsal divisé, deux sections qui suivent encore une loi déterminée dans leur distribution géognostique. A ces six sections à établir parmi les Goniatites proprement dits, on peut peut-être réunir comme septième section les Cératites du Muschelkalk; ils sont en effet sans aucun doute plus voisins des Goniatites que des Ammonites des formations plus récentes. On devra ensuite réunir au reste des Ammonites les Goniatites et les Cératites, en divisant aussi les premiers en différentes familles naturelles.

Avant de passer à la description individuelle des diverses espèces, je crois qu'il est nécessaire de m'expliquer sur la détermination des rapports des dimensions de ces fossiles, caractères introduits pour la première fois dans la science par M. de Buch, et dont je me suis également servi dans la description des espèces. L'accroissement en hauteur, la hauteur d'enroulement, ou plus simplement la hauteur, exprime le rapport dans lequel la hauteur de l'ouverture buccale augmente dans l'espace d'un tour entier. On mesure la hauteur de l'ouverture buccale sur deux tours qui se recouvrent, et l'on pose la plus petite de ces dimensions comme une fraction décimale de la plus grande, prise pour unité. La hauteur de l'ouverture buccale peut être évaluée de deux manières: on peut prendre la perpendiculaire abaissée du milieu du dos, soit jusqu'à la suture, soit jusqu'au milieu du dos du tour précédent. Comme le degré d'enveloppement dans les tours extérieurs est toujours le même que dans les tours intérieurs, on doit par ces deux évaluations obtenir le même résultat pour l'accroissement en hauteur. L'accroissement en largeur ou la largeur exprime le rapport dans lequel la largeur de l'ouverture buccale, c'est-à-dire la dimension perpendiculaire à la hauteur, augmente dans l'espace d'un tour entier; on mesure encore ici la largeur sur deux tours qui se recouvrent, et l'on pose la plus petite dimension comme une fraction décimale de la plus grande. L'accroissement en hauteur et l'accroissement en largeur sont des rapports très constants pour les différentes espèces; réunis à l'enveloppement, ces caractères déterminent complètement la forme d'un Ammonite. L'épaisseur, qui exprime le rapport entre la hauteur et la
largeur de l'ouverture buccale, dépend des deux premiers rapports; elle varie en chaque point toutes les fois que la hauteur, et cela arrive presque toujours, ne croît pas dans le même rapport que la largeur. Par ce motif, j'ai complètement négligé sa détermination. Au reste, pour la distinction des espèces, il ne faut pas attacher à ces rapports numériques une plus grande importance qu'ils n'en méritent réellement. Si, en général, il ne peut pas être question de déterminations mathématiques pour les corps organiques; on pourra, à bien plus forte raison dans ce cas-ci, négliger de petites différences; en effet, on opère ici sur des fossiles dont la conservation, la plupart du temps incomplète, ne permet pas un grand degré d'exactitude dans les mesures.

Section I. NAUTILINI.

Le lobe dorsal est simple, infundibuliforme ou linguiforme; il y a un seul lobe latéral, plat, arrondi, qui quelquefois disparaît tout-à-fait.

1. Ammonites subnautilinus. chlottth.


Le lobe dorsal est infundibuliforme, deux ou trois fois aussi profond que large. Le lobe latéral est large, occupe toute l'étendue du côté; il s'enfonce à peu-près jusqu'à la profondeur du lobe dorsal, et remonte vers la suture avec une inclinaison un peu plus rapide jusqu'à la hauteur de la selle dorsale; l'accroissement en hauteur est de 0,50 à 0,55; l'accroissement en largeur, de 0,68 à 0,72. Il y a 14 loges sur un tour entier. Le nombre des tours est de 6 ou 7. Les tours intérieurs sont tout-à-fait enveloppés; on n'en aperçoit tout au plus qu'un quart.

M. de Buch a déjà fait voir que l'A. Næggerathi Goldf. ne diffère pas d'une manière essentielle de l'A. subnautilinus Schli. Dans ces deux Ammonites, les lobes ont une forme tout-à-fait semblable; la hauteur et la largeur ne diffèrent presque pas, et
l'enveloppement un peu plus faible que présente l'A. Naeggerathi serait à peine un caractère suffisant pour en faire une variété. La forme plus discoïde de ce dernier peut encore moins être regardée comme un caractère propre à le distinguer. On doit être très circonspect dans l'appréciation de la forme extérieure et dans l'emploi de ce caractère pour la distinction des espèces, lorsque comme ici la hauteur et la largeur croissent dans un rapport tout-à-fait différent. Une conséquence nécessaire de l'accroissement plus rapide en hauteur qu'en largeur, c'est que l'épaisseur diminue très rapidement dans les tours extérieurs en suivant une progression géométrique, et par suite, l'Ammonite en s'accroissant prend une forme de plus en plus discoïde. Dans l'A. subnautilinus, la différence d'accroissement entre la hauteur et la largeur est déjà assez grande pour rendre ce caractère très sensible. Le fragment que M. de Buch a décrit sous le nom d'A. evexus, me paraît aussi devoir être rapporté à cette espèce; il ne présente aucun caractère qui permette d'établir entre lui et l'Ammonite précédent un caractère spécifique. Dans l'A. subnautilinus, comme dans celui-ci, les cloisons sont élevées dans le milieu, et leur plus grande profondeur se trouve sur les bords, près des lobes.

L'A. subnautilinus se rencontre dans le calcaire de l'Eifel, près de Gerolstein, et à l'état de pyrite dans le schiste argileux (Thonschiefer) de Wissenbach. De ces deux localités je n'ai vu que des moules jusqu'à présent. Les fossiles pyritisés de Wissenbach sont presque toujours à l'état de moules, et, quand on aperçoit encore quelques stries, on doit penser qu'elles ont appartenu au côté intérieur de la coquille, qui était peut-être très mince.

2. Ammonites late septatus sp. nd. dsc.

Pl. 6, fig. 1, 2, 3, 4.

Le lobe dorsal est infundibuliforme: il n'est pas beaucoup plus profond que large. Il n'existe pas de lobe latéral proprement dit. Ce lobe n'est indiqué dans le jeune âge que par une
faible courbure des cloisons. L'accroissement en hauteur est de 0,70, l'accroissement en largeur de 0,65. Il n'y a que dix ou onze loges dans un tour. Le nombre des tours est de sept. On ne voit que le tiers des tours intérieurs.

Cet Ammonite se trouve, avec le précédent, à l'état de pyrite dans le schiste argileux (Thonschiefer) de Wissenbach : il est bien caractérisé par sa forme et par ses lobes. Comme la hauteur ne croît pas plus rapidement que la largeur, que même elle augmente un peu plus lentement, l'épaisseur de l'Ammonite ne diminue pas dans les tours extérieurs, elle augmente plutôt un peu. Les fig. 1 et 2 de la planche 6 représentent le plus grand exemplaire que je possède. Il y a à-peu-près un tour et demi sans loge. Pour pouvoir voir les lobes, il a fallu supprimer une partie du dernier tour, comme cela est représenté dans la fig. 2. Dans les tours extérieurs, la largeur de l'ouverture buccale est considérablement plus grande que la hauteur ; par conséquent, le côté est très étroit et peut à peine se distinguer du dos, qui est large et arrondi. La forme de cet Ammonite serait complètement sphérique, si les tours intérieurs n'étaient en partie dégagés et ne formaient ainsi un omblin large et profond. Sur le dernier tour, dépourvu de loges, le côté tombe vers l'intérieur, sous un angle obtus, en présentant une arête assez marquée. Cette arête manque totalement dans les tours intérieurs. L'accroissement, plus rapide en largeur qu'en hauteur, fait que l'épaisseur, dans les tours intérieurs, est un peu plus faible que dans les tours extérieurs. Par conséquent aussi le dos est moins large, le côté est plus plat et plus distinctement séparé du dos. Par ce motif encore, le lobe latéral, dans les tours intérieurs, est indiqué sur le côté par une faible courbure de la cloison, tandis que, dans les tours extérieurs, le lobe dorsal s'élargit et s'étend sur le dos, de sorte qu'il n'existe, à proprement parler, qu'une selle dorsale large et arrondie, qui ne commence à s'infléchir en arrière que là où le côté tombe dans l'intérieur. Sur la figure 3 de la planche 6, les lobes sont figurés tels qu'ils commencent à paraître pour la première fois dans l'exemplaire représenté fig. 1, 2, avec un tour et demi dépourvu de loges ; dans la figure 4, ce sont les lobes d'un autre
E. BEYRICH. — Sur les Goniatites.

exemplaire, dont les trois tours les plus intérieurs seulement sont conservés. La coquille de cet Ammonite était striée, comme on le voit encore distinctement sur les moulés ; les stries s'infléchissent en arrière sur le dos, comme c'est la règle ordinaire pour les Goniatites, en formant une courbe très profonde. J'ai choisi le nom de *lateseptatus*, à cause de la distance considérable, à laquelle les cloisons se trouvent les unes des autres, de sorte qu'il n'y a sur un tour que dix ou onze loges, tandis que quatorze semble la limite inférieure du nombre des loges pour les Goniatites.

3. Ammonites Dannenbergi sp. nd. dsc.

Pl. 6, fig. 5 a, b.

Le lobe dorsal est infundibuliforme, deux fois aussi profond que large ; le lobe latéral s'enfonce un peu plus profondément que le lobe dorsal : il occupe le côté tout entier et s'élève vers la suture, pas tout-à-fait à la hauteur de la selle dorsale. L'accroissement en hauteur est de 0,28 ; l'accroissement en largeur de 0,50. Sur un tour il y a dix-huit loges. Les tours intérieurs ne sont pas du tout enveloppés : ils sont tout-à-fait dégagés.

Cet Ammonite se trouve à l'état de pyrite, dans le schiste argileux (Thonschiefer) de Wissenbach. Il se distingue par l'accroissement extrêmement rapide de la hauteur, et parce que les tours intérieurs sont entièrement dégagés. Le seul exemplaire que je connaisse se trouve dans la belle collection de M. Dannenberg à Dillenburg ; le dessin est fait d'après un modèle en plâtre. C'est un fragment dans lequel il n'y a que deux tours conservés. Il manque les tours intérieurs et la partie extérieure, dépourvue de loges. La forme est tout-à-fait discoïde, à cause de l'accroissement plus rapide en hauteur qu'en largeur. Cet Ammonite se distingue par là de l'A. expansus, dans lequel, au reste, les tours sont tout-à-fait enveloppés. Dans ce dernier, la hauteur croît encore plus rapidement ; cependant elle n'est pas dans une disproportion aussi grande avec l'accroissement en largeur. Si l'on suppose que dans cet Ammonite, d'après la
règle ordinaire, il a existé un tour et demi sans loges, on trouve, d'après le rapport de l'accroissement en hauteur, que le diamètre de la coquille entière doit avoir atteint presque un pied. L'épaisseur doit ici diminuer très rapidement, puisque la largeur de l'ouverture buccale croît beaucoup plus lentement que la hauteur. Cette dimension est, au commencement du premier des deux tours conservés, 0,7 ; au commencement du second tour, 1, et à la fin de celui-ci, 1,5. La plus grande épaisseur se trouve au milieu du côté: elle ne décroît néanmoins que faiblement jusque vers la suture et jusque vers le dos. Sur celui des deux tours, qui est extérieur, le dos est complètement arrondi et passe graduellement au côté; sur le tour intérieur, il s'aplatis, et, au commencement du second tour, il forme presque un angle droit avec les côtés. Probablement il existait là, sur la coquille, entre le dos et les deux côtés, deux arêtes tranchantes, dont on voit encore les traces sur le moule. Ces arêtes limitaient la courbe inégalement en arrière, que les stries de la coquille formaient avec le dos: elles disparaissent graduellement sur les tours extérieurs. Nous verrons dans la suite se reproduire, dans plusieurs espèces, cette différence dans la manière dont le dos se réunit avec les côtés sur les tours extérieurs et sur les tours intérieurs. Les lobes de l'A. Dannenbergeri ne sont pas essentiellement différents de ceux de l'A. subnautilinus. La selle dorsale est toujours un peu plus étroite et un peu plus haute; le lobe latéral, au contraire, un peu plus profond. Ce dernier s'élève sensiblement pour former une selle latérale. Il ne monte pas, comme dans l'A. subnautilinus, jusqu'à la suture, et n'est pas coupé là d'une manière brusque; mais il s'infléchit notablement sur le côté (voyez, dans M. de Buch, les fig. 3 et 9, pl. 1). Cette différence vient de ce que, dans l'A. subnautilinus, chaque selle qui réunit le lobe latéral avec le lobe ventral aplati, qui existe dans cet Ammonite, est comprimé au-dessus de la suture par suite du fort enveloppement des tours intérieurs.
4. *Ammonites compressus*.

Pl. 6, fig. 6 a, b.


Bronn *Leth. geogn.* p. 102, pl. 1, fig. 6.

Le lobe dorsal est très petit, infundibuliforme, deux ou trois fois aussi profond que large. Le lobe latéral manque presque complètement, il est tout au plus indiqué par une courbure extrêmement faible de la cloison des loges. L'accroissement en hauteur est de 0,3; l'accroissement en largeur de 0,5. Dans un tour il y a 15 loges. Le nombre des tours est de 4 à 5. Cet ammonite n'est pas du tout enveloppé; les tours intérieurs sont tout-à-fait dégagés.

C'est un fossile qui n'est pas rare dans le schiste argileux (Thonschiefer) de Wissenbach, cependant en général les exemples ne sont pas bien conservés, il manque souvent des tours intérieurs, et ce n'est que rarement qu'on voit la partie extérieure dépourvue de loges. C'est ce qui doit avoir été cause que Goldfuss en a fait une *Spirula*, et que H. de Meyer en a fait un genre particulier sous le nom de *Gyrocérratites*. Le lobe dorsal, petit à la vérité, mais qui cependant existe distinctement, prouve que c'est bien réellement un Goniatite. Les tours ne sont nullement séparés les uns des autres comme dans la Spirule; ils se touchent, seulement ils ne se touchent que suivant une ligne. La plus grande épaisseur se trouve dans le milieu du côté qui s'abaisse graduellement, tant vers le dos, que vers la suture, de sorte que la coupe de l'ouverture buccale est une ellipse. Une conséquence de ceci c'est que sur les moules, où la coquille manque, il doit y avoir effectivement un petit intervalle entre les tours; cet intervalle paraît encore plus grand, si les parties de schiste entre les tours n'ont pas été enlevées avec assez de soin. Le dessin que donne Bronn
dans le *Lethœa geognostica* n'a certainement pas été fait d'après nature; mais il l'a été peut-être d'après la description de H. de Meyer. Le Gyrocéaratite de ce dernier ne peut être rapporté qu'à ce fossile. Bronn donne comme synonyme un *Lituites gracilis* Goldf. *collect.*; sans doute il existe dans le musée de Bonn un fossile désigné comme *Lituites*; mais c'est un tout autre fossile; il ne présente pas de loges, et je pense que c'est un moule d'*Euomphalus*, peut-être l'*E. laevis* Goldf.

Relativement à l'accroissement en hauteur et en largeur, l'*A. compressus* est très voisin de l'*A. Dannenbergi*; il s'en distingue principalement par la simplicité des lobes, et il n'atteint jamais la grandeur de ce dernier. Le lobe ventral n'existe ici pas plus que le lobe latéral. Cet ammonite a de commun avec l'*A. lateseptatus* cette simplicité des lobes. Dans l'exemplaire figuré, Pl. I, fig. 6, il y a une portion de la partie sans loges de conservée. On voit encore fort distinctement dessus les stries de la coquille qui était très mince.

Les espèces décrites ici, auxquelles se rattache intimement l'*A. expansus* de Buch, forment parmi les Goniatites un groupe limité d'une manière très naturelle. Excepté le lobe dorsal qui se voit toujours distinctement, on ne peut rien dire de plus de particulier des lobes. Il existe seulement une inflexion très légère de la cloison des loges, qui dans tous les individus occupe le côté tout entier jusqu'à la suture. On ne peut ranger ici avec certitude aucun des Goniatites du calcaire de transition ancien du Fichtelgebirge, qu'a décrits le comte de Münster; on peut seulement ajouter à cette section, comme espèces douteuses, l'*A. latus* et l'*A. angustiseptatus*.

Section II. SIMPLICES.

Le lobe dorsal est simple, infundibuliforme, ou linguiforme. Il existe un lobe latéral plus ou moins anguleux, et une large selle latérale qui occupe la plus grande partie du côté.
5. Ammooites *retrorsus* de Buch.

Pl. I, fig. 10, a, b, c. — L. de Buch Goniat. Pl. 11, fig. 13.

Le lobe dorsal est petit, infundibuliforme, à-peu-près aussi large que profond. Le lobe latéral est arrondi en dessous, plus de deux fois aussi profond que le lobe dorsal, et un peu plus large que profond. La selle latérale, large et arrondie, est aussi élevée que la selle dorsale, occupe la moitié du côté, et ne se creuse que faiblement en s'approchant de la suture. L'accroissement en hauteur est de 0,45 ; l'accroissement en largeur de 0,65 : cet ammonite est tout-à-fait enveloppé sans ombilic.

Il se trouve dans le calcaire à Goniatites d'Oberscheld, près de Dillenburg, et dans la mine de Martenberg dans le pays de Waldeck. Les exemplaires que je possède de la première localité ont au moins un pouce de grandeur, et sont pour le reste tout-à-fait semblables à ceux du pays de Waldeck. Cet ammonite n'a rien de commun, que la forme enveloppée, avec l' *A. Münsteri* que M. de Buch croyait voisin de l' *A. retrorsus* ; au contraire il concorde si bien tant pour la forme que pour les lobes avec l' *A. simplex* de Buch, que peut-être ne doit-on pas séparer ces deux fossiles comme des espèces différentes. Pour l'accroissement en hauteur M. de Buch ne donne pour l' *A. retrorsus* que 0,32, et pour l' *A. simplex* 0,40 ; dans tous les cas, la hauteur croît dans tous les deux beaucoup plus rapidement que la largeur, de sorte que l'épaisseur dans les tours extérieurs diminue rapidement, et que, plus l'Ammonite est grand, plus sa forme est discoïde. Dans l' *A. simplex* tel que M. de Buch l'a décrit et figuré, le lobe dorsal est considérablement plus grand, le lobe latéral est plus étroit et de même profondeur que le lobe dorsal. Cela seul distingue cet ammonite de l' *A. retrorsus*. Les stries que l'on voit sur la coquille très délicate de l' *A. retrorsus* et qui lui ont fait donner son nom, suivent la règle générale pour les Goniatites. Sur la surface aplatie du côté, des plus fins forment une courbe très plate, infléchie en arrière; ils se relèvent ensuite vers le dos, et forment dessus un sinus étroit et pro-
fond dont la concavité est dirigée en avant. La largeur et la profondeur du sinus dorsal paraissent correspondre à la largeur du dos pour les différentes espèces; plus le dos est étroit, plus ce sinus aussi est resserré et profond; ce sinus est très large et très plat dans l’A. late septatus et dans l’A. Listeri.

L’A. retrorsus est la seule espèce de cette section qui jusqu’ici ait été trouvée dans le terrain de transition du Rhin. L’A. simplex qui en est très voisin, et que l’on dit se trouver au Rammelsberg près de Goslar, vient peut-être du calcaire de Grand, dont les fossiles ont un grand rapport avec ceux du calcaire de transition de l’Eifel. A ces deux ammonites se rattache intimement l’A. ovatus Münster, dont la description ne laisse apercevoir aucune différence importante ni dans la forme, ni dans les lobes. La partie principale de cette section se compose des espèces nombreuses à lobe latéral anguleux et infundibuliforme, du calcaire de transition du Fichtelgebirge, que le comte de Münster a fait connaître: A. nodulosus, A. sublevis, A. globosus, A. sublinearis, A. linearis, A. divisus et A. hybridus. On doit ajouter encore comme formant une troisième subdivision l’A. subsulcatus et l’A. sulcatus Münster, qui se distinguent par leur lobe latéral linguiforme, et se rapprochent en quelque sorte de la section suivante; ils ont cependant encore une selle dorsale large et arrondie, qui occupe la plus grande partie du côté.

Section III. ÉQUALES.

Le lobe dorsal est simple, linguiforme, ou infundibuliforme. Il y a deux ou un plus grand nombre de lobes latéraux, qui deviennent successivement plus grands ou plus petits en se rapprochant de la suture.

6. Ammonites Becheri Goldf.

Pl. 6, fig. 7, 8. — L. de Buch Goñiat. Pl. 11, fig. 2.

Le lobe dorsal est infundibuliforme; sur le côté qui est fai-
blement bombé se trouvent quatre lobes latéraux linguiformes, qui deviennent de plus en plus petits, en se rapprochant de la suture. Le premier de ceux-ci est deux fois aussi profond que le lobe dorsal, le quatrième atteint encore les deux tiers de la profondeur du premier, après lui vient une selle ventrale considérable qui est deux fois aussi large que la troisième selle latérale. L'accroissement en hauteur est de 0,40; l'accroissement en largeur de 0,65. On compte 7 tours; les deux tiers à-peu-près des tours intérieurs se trouvent enveloppés.

Cet ammonite se rencontre dans le calcaire rouge à Goniatites au Beilstein, près d'Oberscheld; il s'est trouvé aussi dans le fer oligiste de la mine de Rinzenberg. Il paraît très voisin de l'A. Henslowi Sow., cependant celui-ci n'a que trois lobes latéraux linguiformes. Comme il augmente beaucoup plus rapidement en hauteur qu'en largeur, sa forme est discoïde; l'épaisseur diminue rapidement. Son contour présente l'apparence elliptique, comme cela arrive toujours lorsque la hauteur croît beaucoup plus rapidement que la largeur. Rarement la coquille est bien conservée; elle est épaissie et plissée; entre des plis fort régulièrement espacés se trouvent de nombreux plis plus fins. La plus grande épaisseur est près de la suture; le côté légèrement bombé tombe doucement vers le dos; ce dernier forme avec les côtés deux arêtes tout-à-fait émoussées, entre lesquelles se trouve le sinus dorsal des plis.

Outre l'A. Becheri et l'A. Henslowi, je place dans cette section l'A. Münsteri de Buch, l'A. orbicularis Münster, et aussi l'A. planus, qui tous les trois se trouvent dans le calcaire de transition du Fichtelgebirge, et se distinguent par ce caractère que les lobes latéraux deviennent de plus en plus grands en se rapprochant de la suture. Cette distinction établit dans la section deux subdivisions très naturelles.

Section IV. IRREGULARES.

Le lobe dorsal est simple, infundibuliforme. Il y a deux ou un plus grand nombre de lobes latéraux, anguleux, en général infundibuliformes, qui augmentent irrégulièrement.
7. Ammonites Hœninghausi de Buch.

L. de Buch Goniat. Pl. 7, fig. 2.

Le lobe dorsal est un peu plus large que profond, la selle dorsale est anguleuse; il existe deux lobes latéraux, le premier est linguiforme et deux fois aussi profond que le lobe dorsal. La première selle latérale est étroite et s'élève beaucoup plus haut que la selle dorsale. Le deuxième lobe latéral n'est que moitié aussi profond que le premier, la seconde selle latérale atteint à peine la hanteur de la selle dorsale, et tombe assez fortement vers la suture. L'accroissement en hauteur est de 0,51; l'accroissement en largeur de 0,55. Les tours intérieurs sont enveloppés jusqu'à la moitié.

Outre le fragment que possède le musée de Bonn, il se trouve un exemplaire plus complet et mieux conservé de cet ammonite dans la collection de M. le docteur Hassbach à Bensberg. D'après M. Hassbach il provient du calcaire de transition des environs de la Steinbreche, non loin de Bensberg, c'est-à-dire d'un calcaire qui est identique avec le calcaire de l'Eifel.

8. Ammonites multiseptatus de Buch.

L. de Buch Goniat. Pl. 7, fig. 13.

Le lobe dorsal est petit, à-peu-près aussi large que profond. Des quatre lobes latéraux le premier est trois fois aussi profond que le lobe dorsal, le deuxième est le plus profond, le troisième et le quatrième sont plus petits; il existe encore le commencement d'un cinquième lobe latéral. Les selles latérales de même que la selle dorsale sont larges et arrondies, la deuxième de celles-ci est la plus élevée. L'accroissement en hauteur est de 0,53; l'accroissement en largeur de 0,48. Il y a sur un tour cinquante-six loges.

On ne connaît jusqu'ici de cet ammonite très bien caractérisé par la forme des lobes et le nombre des loges, qu'un fragment
E. BEYRICH. — Sur les Goniatites.

qui se trouve dans le musée de Bonn. Il est changé en pyrite, et peut très bien appartenir au calcaire de transition de l’Eifel, dans lequel on rencontre bien des fossiles pyritisés.

9. **Ammonites multilobatus** sp. nd. dsc.

Pl. 6, fig. 9.

Sur le côté qui est tout-à-fait plat et uni se trouvent six, peut-être même sept lobes latéraux anguleux. Les cinq premiers deviennent de plus en plus profonds à partir du dos, le cinquième est le plus profond; vient ensuite un sixième plus petit et vraisemblablement encore un septième. Les selles latérales sont anguleuses, la cinquième est la plus élevée. La forme est discoïde; le dos est très étroit et se réunit avec les côtés, qui sont tout-à-fait plats, suivant une surface arrondie.

A cause de sa forme très différente de celle de tous les autres ammonites et du nombre des lobes, j’ai cru devoir établir cette espèce dont je ne possède qu’un fragment peu considérable du calcaire rouge à Goniatites d’Oberscheld. On ne peut déterminer, d’après ce fragment, ni l’accroissement en hauteur ni en largeur. La largeur du côté, sur tout l’espace conservé dans ce fragment, s’élève presque à un pouce et demi, de sorte que l’Ammonite doit avoir été d’une grandeur remarquable. La quatrième selle dorsale se trouve à-peu-près au milieu du côté.

A la quatrième section appartiennent les Goniatites suivants, provenant du Fichtelgebirge: *A. contiguus, A. speciosus, A. subarmatus*, et *A. spurius* Münster; probablement aussi l’*A. maximus* dont les lobes ne sont pas encore connus.

Section V. **PRIMORDIALES.**

Le lobe dorsal est divisé. Il n’y a qu’un lobe latéral qui est la plupart du temps arrondi et plus rarement anguleux. Son côté ventral s’élève jusqu’à la suture sans se courber pour former une selle latérale.
10. **Ammonites aquabilis** sp. nd. dsc.

Pl. 7, fig. 1 a, b.

Le lobe dorsal est plus de deux fois plus large que profond; par suite, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane qui sépare les deux bras du lobe dorsal est arrondie en dessus, et n’atteint pas la moitié de la hauteur totale du lobe; elle se creuse un peu, immédiatement vers le siphon. La selle dorsale est large et arrondie, et s’étend en avant jusqu’au milieu du côté. Le lobe latéral est à peu près aussi large que la selle dorsale, et descend un peu plus bas que la moitié de la hauteur du lobe dorsal; son côté ventral monte rapidement vers la suture à la même hauteur que la selle dorsale. L’accroissement en hauteur est de 0,70, l’accroissement en largeur de 0,75. Le nombre des tours est de cinq à six; les tours intérieurs sont enveloppés jusqu’à la moitié.

Le hauteur croît dans cet ammonite plus lentement que cela n’a lieu ordinairement pour les Goniatites. La largeur croît en même temps très lentement de sorte que la forme est très discoïde. Les tours extérieurs ne s’élèvent que peu au-dessus des tours intérieurs qui sont enveloppés jusqu’à la moitié; par conséquent les tours sont tous presque dans le même plan. La plus grande épaisseur se trouve au milieu du côté qui s’abaisse très doucement vers le dos et vers la suture. Le dos est arrondi. La coquille est épaisse et ne présente que de faibles traces de stries. Cet ammonite se rencontre dans le calcaire rouge à Goniatites, au Sessacker, près d’Oberscheld.

11. **Ammonites carinatus** sp. nd. dsc.

Pl. 6, fig. 11 a, b, c.

Le lobe dorsal est bien trois fois aussi large que profond, par conséquent ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est largement arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondie en dessus et atteint presque la moitié de la hauteur, ses deux côtés s’élèvent très doucement pour former les selles dorsales. La saillie médiane du lobe dorsal est arrondi
teur du lobe. La selle dorsale est très large et arrondie; elle se prolonge beaucoup au-delà de la moitié du côté. Le lobe latéral est arrondi en dessous, et monte vers la suture jusqu'à la moitié seulement de la hauteur de la selle dorsale. L'accroissement en hauteur est de 0,45; l'accroissement en largeur de 0,57. Il y a cinq à six tours. Les tours intérieurs sont presque tout-à-fait enveloppés, il ne reste qu'un omblilic étroit et profond.

Les lobes de cet ammonite présentent une grande ressemblance avec ceux de l'espèce précédente avec laquelle il se trouve dans les mêmes gisements. La seule différence qui existe entre ces deux ammonites, c'est que par suite de la largeur encore plus grande du lobe dorsal et de la selle dorsale, cette dernière s'étend encore plus loin sur le côté, et que la paroi ventrale du lobe latéral s'élève moins haut vers la suture. Ce dernier caractère peut bien venir de ce que les tours intérieurs sont ici plus fortement enroulés, par suite une partie du lobe latéral doit être comprimé au-dessus de la suture. La cloison des loges se creuse pour former un lobe ventral étroit et profond, à l'endroit où elle touche le dos du tour précédent. Ce lobe ventral est accompagné de deux lobes auxiliaires plats et larges, qui occupent le côté du tour précédent dans tout l'espace où il est enveloppé. La plus grande épaisseur est près de la suture; à partir de là, le côté s'incline successivement jusqu'au dos. Sur le milieu du dos, si la coquille est conservée, on voit se prolonger un bourrelet étroit et élevé qui n'est pas habituel dans les Goniatites, et peut bien n'être produit que par le siphon qui se trouve placé immédiatement au-dessous de la coquille. On ne voit rien de ce bourrelet, si la coquille manque; il se perd aussi tout-à-fait sur la partie de la coquille qui n'a pas de loges, le dos est alors tout-à-fait arrondi. Dans l'exemplaire représenté, cette partie sans loges manque totalement; l'Ammonite complet a plusieurs pouces de diamètre. La coquille est épaisse et presque entièrement lisse.
12. Ammonites intumescens sp. nd. dsc.

Pl. 7, fig. 2 a, b, c.

Le lobe dorsal est un peu plus large que profond, ses côtés montent rapidement pour former la selle dorsale. La saillie médiiane atteint au moins la moitié de la hauteur du lobe. La selle dorsale est beaucoup plus haute que large, occupe le milieu du côté, et tombe rapidement pour former le lobe latéral; celui-ci est presque aussi profond que le lobe dorsal; il est anguleux et son côté ventral s'élève rapidement d'abord, puis plus doucement, vers la suture, presque jusqu'à la moitié de la hauteur du lobe dorsal. L'accroissement en hauteur est de 0,45; l'accroissement en largeur de 0,50. Des cinq à six tours qui existent, les tours intérieurs sont presque tout-à-fait enveloppés, de sorte qu'il ne reste qu'un ombilic étroit et profond.

Cet ammonite se trouve avec les deux précédents au Sessacker près d'Oberscheld. Dans la forme il a quelque ressemblance avec l'A. carinatus; cependant il est plus épais, moins discoïde, puisque avec un accroissement pareil en hauteur, la largeur croît plus rapidement. Les lobes se distinguent en outre d'une manière assez tranchée. La plus grande épaisseur se trouve vers la suture; les côtés tombent assez rapidement vers le dos. La partie dépourvue de loges manque dans l'exemplaire représenté; l'Ammonite complet doit avoir eu au moins un diamètre de quatre pouces.

13. Ammonites orbiculus sp. nd. dsc.

Pl. 6, fig. 12 a, b.

Le lobe dorsal est deux fois aussi large que profond et ses deux côtés s'élèvent très doucement pour former les selles dorsales; la saillie médiiane atteint le milieu de la hauteur du lobe. La selle dorsale est large et arrondie, et occupe au moins les trois quarts du côté, elle est plus large que haute. Le lobe latéral est anguleux, et à-peu-près de la même profondeur que le
lobe dorsal ; son jambage ventral s'élève vers la suture, mais il ne monte pas jusqu'à la moitié de la hauteur de la selle dorsale. L'accroissement en hauteur est de 0,47; l'accroissement en largeur est de 0,56. Les tours intérieurs sont presque tout-à-fait enveloppés, il reste un ombilic étroit et profond.

Cet ammonite a été trouvé à l'état de pyrite dans les environs de Gerolstein. Le seul exemplaire que je connaisse, dont nous avons donné ici la description et la figure, se trouve dans la collection de M. Zehler à Crefeld. Il présente un intérêt particulier, parce qu'il est jusqu'ici le seul exemple d'un Goniatite à lobe dorsal divisé, du calcaire de l'Eifel. Il a de commun avec l'ammonite précédent, son lobe latéral anguleux; dans la forme il se rapproche davantage de l'A. carinatus; il se distingue suffisamment de tous les deux. On doit encore se représenter ici par la pensée la partie sans loges de l'ammonite; ce fragment est cloisonné dans tout l'espace qui est conservé.


Pl. 7, fig. 3 a, b, c.

Le lobe dorsal est à-peu-près aussi large que profond, ses jambages s'élèvent rapidement pour former la selle dorsale, la saillie médiane n'atteint pas le quart de la hauteur du lobe. La selle dorsale est largement arrondie et occupe la moitié du côté. Le lobe latéral est largement arrondi et n'atteint pas le tiers de la profondeur du lobe dorsal; son jambage ventral s'élève vers la suture jusqu'à la hauteur de la selle dorsale. L'accroissement en hauteur est de 0,50; l'accroissement en largeur est 0,57. On compte cinq à six tours; les tours intérieurs sont tout-à-fait dégagés.

Cet ammonite se trouve dans le calcaire rouge à Goniatites au Sessacker près d'Oberscheld. D'après sa forme on le prendrait plutôt pour un Clyménie que pour un Goniatite. Dans les tours intérieurs le dos aplati forme avec le côté un angle droit ou plutôt un angle aigu; en même temps la plus grande épaisseur se trouve immédiatement vers le dos, et le côté descend en formant une surface inclinée, peu bombée, depuis le dos jusqu'à
la suture. Le dos est enfoncé d'une manière particulière, de sorte qu'un canal large et plat se prolonge dessus. Sur l'avant-dernier tour encore le dos est plus large que le côté. Les côtés de tous les tours sont tout-à-fait dégagés. Ni l'arête tranchante que le dos forme avec le côté, ni le canal dorsal ne se voient sur le dernier tour dépourvu de loges. Là le dos est entièrement arrondi et la plus grande épaisseur se trouve dans le milieu du côté, de sorte que la coupe de l'ouverture buccale est presque tout-à-fait ronde. La coquille est fine et très élégamment striée sur le dernier tour ; les stries forment sur le côté comme sur le dos une courbe plate dirigée en arrière. On doit encore remarquer que, dans cet ammonite, il existe un profond lobe ventral qui s'enfonce sur le dos du tour précédent, sans être accompagné à droite et à gauche de lobes auxiliaires.

Parmi les espèces déjà décrites, il n'y a que l'A. primordialis qui se rapporte à cette cinquième section. Il se trouve avec d'autres espèces, appartenant en partie à cette section, dans le calcaire de transition du Hartz, auprès de Grund, terrain qui a beaucoup de rapport avec le calcaire de l'Eifel, s'il n'est pas tout-à-fait identique avec lui. Comme le calcaire à Goniatites d'Oberscheld est vraisemblablement encore plus récent que le calcaire de l'Eifel, il semble qu'on peut poser cette loi : que les Goniatites de cette section, n'appartiennent qu'aux calcaires de transition récents, voisins du calcaire carbonisèrè; à côté de la grande analogie qui existe entre les lobes de cette section et ceux de la section suivante, il est intéressant de voir que pour les lobes des Goniatites du terrain houiller, on peut encore établir une différence peu importante, il est vrai, mais cependant très constante.

Section VI. CARBONARIIL

Le lobe dorsal est divisé. Il y a un seul lobe latéral anguleux et une selle latérale large et arrondie.
15. Ammonites sphæricus Mart.

A. carbonarius Goldf. — L. de Buch Goniat. Pl. 11, fig. 9 à 9°.

Le lobe dorsal est à-peu-près aussi large que profond : sa saillie médiane n'atteint pas la moitié de la hauteur du lobe. La selle dorsale, de même que les deux selles de la saillie médiane, forment, en s'élevant, une pointe émoussée. Le lobe latéral est unique, petit ; il n'est pas beaucoup plus profond que le lobe dorsal : il est à-peu-près aussi large que profond. La selle latérale s'incline très doucement vers la suture ; elle est aussi haute que la selle dorsale et plus large que le lobe latéral. L'accroissement en hauteur est de 0,65 à 0,72 ; l'accroissement en largeur, de 0,70. Il y a quatorze loges dans un tour. Les tours intérieurs sont presque tout-à-fait enveloppés. Il reste un ombral profond, plus ou moins large.

Entre l'A. sphæricus Mart. et l'A. carbonarius Goldf., il n'existe aucune différence spécifique, relativement à la forme et aux lobes. On peut observer tous les passages depuis les individus sphériques tout-à-fait enveloppés jusqu'à ceux à ombral large et profond. S'il y a une différence entre ces deux Ammonites, on ne peut la trouver que dans la manière d'être de la coquille, que dans les plus nombreux et élevés, qui, dans l'A. carbonarius lors même que la coquille manque, paraissent comme des côtes sur les moules. Cela a lieu notamment pour les individus que l'on a trouvés les premiers dans la mine d'Hoffnung, près de Werden, et auxquels M. Goldfuss a spécialement imposé le nom de carbonarius. Les Ammonites pyriteux, qui se trouvent à l'état de galets dans la Ruhr, ainsi que ceux du calcaire carbonifère proprement dit de Visé, sont des moules, sur lesquels les lobes sont très bien conservés ; cependant on ne voit plus rien de la structure de la coquille. Les lobes de l'A. sphæricus se distinguent de ceux des autres Goniatites du terrain houiller en ce que la selle dorsale, ainsi que les deux selles de la saillie médiane du lobe dorsal ne sont pas arrondies, mais, au contraire, anguleuses. On ne rencontre pas l'A. sphæricus parmi les Ammò-
nites, qui se trouvent dans le schiste alumineux, près de Choquier.


Pl. 6, fig. 13 a, b.

Le lobe dorsal est à-peu-près aussi large que profond. La saillie médiane atteint la moitié de la hauteur du lobe; ses deux selles sont arrondies de même que la selle dorsale. Le lobe latéral est presque aussi profond que le lobe dorsal: il a, comme ce dernier, ses deux bras échanterés vers le bas, en forme de langue. Le dos large et arrondi forme avec le côté, qui descend rapidement vers l'intérieur, une arête tranchante, qui coupe par le milieu la selle latérale. Celle-ci est de la même hauteur que la selle dorsale. L'accroissement en hauteur est de 0,72; l'accroissement en largeur, de 0,62. Il y a de seize à dix-huit loges dans un tour. Les tours intérieurs sont exactement enveloppés jusqu'à l'arête qui se trouve entre le côté et le dos, de sorte que les côtés forment un ombilic infundibuliforme, large et profond. On voit sur le dos des plis forts et élevés.

L'*A. Listeri*, tel qu'il est figuré Pl. 6, fig. 13, se rencontre à Choquier, dans le schiste alumineux placé au-dessus du calcaire carbonifère: il se trouve dans des rognons arrondis, qui sont enveloppés par le schiste alumineux et qui sont presque tout entiers composés d'Ammonites. Il n'a pas été, que je sache, trouvé jusqu'ici dans le calcaire carbonifère du Rhin. Avec cet Ammonite se trouvent, à Choquier, l'*A. diadema* Goldf. et l'*A. atratus* Goldf., pour lesquels la forme des lobes est tout-à-fait la même. Ce qui est surtout caractéristique pour l'*A. Listeri*, c'est l'arête tranchante, que l'on peut regarder comme la limite entre le large dos et le côté, et qui coupe par le milieu la selle latérale. Les plis de la coquille sont forts et simples dans les tours intérieurs. Dans les tours extérieurs ils deviennent de plus en plus fins et se bifurquent à la naissance du dos. On les aperçoit toujours comme des côtes, même sur les moules. Les plis s'élèvent sur l'arête dorsale en forme d'écaillles, de sorte que celle-ci paraît crénélée, ce qui est bien exprimé par la *series*
marginalis tuberculorum que Martin donne dans sa caractéristique. Le nombre des plis sur le troisième ou quatrième tour est d'environ trente ou quarante: leur nombre augmente très rapidement dans les derniers tours. Un fait remarquable et très intéressant, c'est que, sur les tours les plus extérieurs, la direction des plis change en même temps. Sur les tours intérieurs ils forment, sur le dos, contrairement à la règle générale pour les Goniatites, une courbe dont la convexité est dirigée en avant. Cette courbe s'aplatis de plus en plus; les plis se dirigent pendant quelque temps en ligne droite; et enfin ils reprennent la direction qui leur est ordinaire. Ce changement dans la direction des plis est figuré sur la pl. 7 A, fig. 8. Cela prouve que l'on ne doit attacher aucune importance à la direction des stries ou des plis de la coquille, pour la séparation des Goniatites d'avec le reste des Ammonites.

17. Ammonites diadema Goldf.

Pl. 7, fig. 5, 6, 7.

Le lobe dorsal est à- peu-près aussi large que haut. La saillie médiante est arrondie comme la selle dorsale. Le lobe latéral est presque aussi profond que le lobe dorsal et échancré en forme de langue. La selle latérale est large et arrondie, et s'abaisse doucement vers la suture. L'accroissement en hauteur est de 0,52; l'accroissement en largeur, de 0,60 à 0,65. Les tours intérieurs sont presque complètement enveloppés: il reste un ombilic étroit et profond. La forme est plutôt discoïde que globuleuse. La coquille est finement plissée.

Le choix du nom que Goldfuss a donné à cet Ammonite peut bien venir des sillons aplatis qui, au nombre de quatre à six sur le contour d'un tour, se prolongent sur le dos et sur le côté, à des distances assez égales. La direction de ces sillons suit tout-à-fait celle des plis de la coquille; cependant ils ne sont visibles que sur les moules: ils sont tout-à-fait comblés par la coquille. La coquille est très délicatement plissée sur les tours extérieurs. Les plis sont très peu élevés et ne laissent sur les moules que des traces indistinctes. Ils deviennent, à la vérité, plus forts sur les tours
intérieurs ; cependant ils ne s'élèvent que très peu. La direction des plis change sur les tours intérieurs exactement comme nous l'avons décrit ci-dessus. Ce changement ne commence toutefois que plus tard, et on doit rétrograder au moins d'un tour tout entier pour l'apercevoir.

L'A. diadema, tel qu'il est décrit ici, paraît différer totalement de l'A. Listeri par la forme et par la structure de la coquille; cependant on ne devrait pas regarder ces deux Ammonites comme deux espèces différentes, si l'on voulait suivre rigoureusement ce principe de confondre ensemble tout ce qui est réuni par un passage continu. Dans le fait, on observe entre ces deux Ammonites tous les passages possibles. Ces passages sont déterminés par la variation qui a lieu dans l'accroissement en hauteur et dans l'accroissement en largeur, caractères qui sont si constans pour les Goniatites et qui ici varient entre des limites assez éloignées. L'accroissement en hauteur est, pour l'A. Listeri, évalué à 0,72 : c'est un accroissement très lent. Pour l'A. diadema, il est de 0,52 : ce sont les deux limites. L'accroissement en largeur demeure assez constant. Le passage de la forme de l'A. Listeri à l'A. diadema a lieu ainsi : par suite de l'accroissement de plus en plus rapide de la hauteur, la largeur du dos diminue ; par conséquent l'arête, que l'on apercevait comme formant la limite entre le dos et le côté, paraît de moins en moins sensible. A mesure que le dos devient plus étroit, et que les côtés, qui commencent à paraître, deviennent plus larges, l'ombilic se rétrécit et les plis de la coquille deviennent en même temps plus nombreux.

18. Ammonites atritus Goldf.

Pl. 7, fig. 8 a, b.

Le lobe dorsal est un peu plus large que profond; la saillie mé-diane atteint le milieu de la hauteur du lobe et est arrondie, aussi bien que la selle dorsale. Le lobe latéral est aussi large que profond. La selle latérale atteint la même hauteur que la selle dorsale et ne s'abaisse que peu vers la suture. L'accroissement en hauteur
est de 0,40 ; l'accroissement en largeur, de 0,55. Les tours intérieurs sont complètement enveloppés, sans omblic.

Cet Ammonite se trouve avec les deux précédens à Choquier. Ses tours intérieurs sont tout-à-fait enveloppés ; sa hauteur croît très rapidement : par suite sa forme devient très discoïde : c'est ce qui le distingue de l'A. diadema, avec lequel on ne peut jamais le confondre. La coquille est extrêmement mince et très finement striée et plissée. Les plis, autant que j'ai pu les observer, ne présentent aucun changement de direction. Les lobes concordent dans tous leurs caractères, comme on l'a déjà remarqué, avec ceux des deux espèces précédentes. Cet Ammonite demeure la plupart du temps très petit, et atteint à peine trois quarts de pouce de diamètre.

*Récapitulation des Goniatites.*

**Section I. Nautilini.**

1. *A. subnautilinus* Schl.
2. *A. lateseptatus*.
3. *A. Dannenbergeri*.
5. *A. expansus* de Buch.

**Section II. Simplices.**

a. Le lobe latéral est profond et arrondi.
8. *A. simplex* de Buch.
9. *A. retrorsus* de Buch.

b. Le lobe latéral est anguleux et infundibuliforme.
15. *A. linearis* Mst.
17. *A. hybridus* Mst.
E. BЕYRICH. — Sur les Goniatites.

c. Le lobe latéral est anguleux et linguiforme.
18. *A. subsulcatus* Mst.

Section III. Æquales.

a. Les lobes latéraux deviennent de plus en plus grands en se rapprochant de la suture.
20. *A. Münsteri* de Buch.
22. *A. planus* Mst.

b. Les lobes latéraux deviennent de plus en plus petits en se rapprochant de la suture.
23. *A. Henslowi* Sow.

Section IV. Irregularæ.

26. *A. multiseptatus* de Buch.
27. *A. multilobatus*.
29. *A. speciosus* Mst.
32. *A. maximus* Mst.

Section V. Primordiales.

33. *A. primordialis* de Buch.
34. *A. aquabilis*.
35. *A. carinatus*.
36. *A. intumescens*.
37. *A. orbiculus*.
38. *A. calculiformis*.

Section VI. Carbonarii.

40. *A. Listeri* Mart.
41. *A. diadema* Goldf.
42. *A. atratus* Goldf.
EXPÉXICATION DES FIGURES.

PLANCHE 6.

Fig. 1, 2, 3, 4. Ammonites late septatus.
Fig. 5. Ammonites Dannenbergi.
Fig. 6. Ammonites compressus.
Fig. 7, 8. Ammonites Becheri.
Fig. 9. Ammonites multilobatus.
Fig. 10. Ammonites retrorsus.
Fig. 11. Ammonites carinatus.
Fig. 12. Ammonites orbiculus.
Fig. 13. Ammonites Listeri.

PLANCHE 7 A.

Fig. 1. Ammonites aquaticus.
Fig. 2. Ammonites iotumescens.
Fig. 3. Ammonites calciformis.
Fig. 4. Ammonites atratus.
Fig. 5, 6, 7. Ammonites diadema.

Recherches sur différentes pièces du squelette des animaux vertébrés, encore peu connues, et sur plusieurs vices de conformation des os,

Par G. Breschet,
Professeur d'anatomie à la Faculté de médecine de Paris, membre de l'Institut de France, etc.

§ 1. Considérations sur les os sus-sternaux chez l'homme.

Je me bornerai à signaler ici le sternum dont G. Cuvier, J. F. Meckel, Éverard Home, MM. Geoffroy-Saint-Hilaire, Serres, Carus, de Blainville, F. J. Lhermier, Dugès, ont parlé avec détails. En effet, il existe dans la manière de considérer les diverses parties qui composent cet os de nombreuses dissidences. Si nous examinons d'abord le sternum des poissons, les difficultés sont plus grandes que dans les autres classes des Vertébrés, non-seulement pour déterminer les éléments de cet os, mais encore pour savoir quelle est la pièce osseuse qu'il faut appeler sternum, car on a donné ce nom à quatre os différents.

Duverney désigne comme constituant le sternum, de petits os situés au-dessous des arcs des branchies, et non, comme le veut M. Geoffroy, les arcs branchiaux. Suivant Gouan, le sternum est l'os médian impair situé entre la tête et la clavicule. Vicq d'Azyr appelle sternum ce que d'autres anatomistes nomment les omoplates et les clavicules. G. Cuvier reconnaît pour sternum une série d'os impairs allant de devant en arrière, qu'on trouve, chez quelques poissons, sur la ligne médiane de la face inférieure de l'abdomen, et auxquels les côtes viennent se fixer : on les trouve surtout dans les Clupées et les Vomers. Cette dernière opinion paraît être la seule admissible aux yeux de J. Fr. Meckel.

M. Geoffroy Saint-Hilaire, auquel nous devons un important travail sur les sternum, pense avoir trouvé chez les poissons Chondroptérygiens l'analogue de cet os dans une pièce cartilagineuse fort large, située entre les branchies ; et chez les poissons osseux, ce sternum est bien réellement la portion

(4) Historia Piscium, Argentorati, 1770, p. 64, tab. ii, fig. 1 f.
(7) Annales du Muséum d'histoire naturelle, l. x, p. 87. — Philosophie anatomique, t. i, p. 59.
osseuse que Gouan appelle ainsi, en y joignant les deux branches de l’hyoïde. (1)

Ce zoologiste célèbre assigne des noms particuliers à chacune des pièces du sternum : il nomme épisternaux les plus antérieures; entosternal la pièce moyenne; hyosternaux les portions antérieures et latérales; hyposternaux celles qui sont placées en arrière et sur les côtés, et xiphisternaux les pièces postérieures et médianes. Cette détermination doit s’appliquer au sternum considéré dans les quatre classes de Vertébrés.

Suivant J. Fr. Meckel, la plupart des poissons sont privés de sternum, et chez ceux qui le possèdent, cet os est représenté par un nombre indéterminé de pièces osseuses en forme de V, imbriquées, qui vont depuis la nageoire anale jusqu’à la jonction des deux os de l’épaule.

Rosenthal (2) croit que M. Geoffroy a pris, dans les poissons, les os latéraux du larynx pour en faire l’hyosternal et l’hypo-sternal. M. J. Van der Hoeven (3), au contraire, partage la manière de voir du naturaliste français. (4)

G. Bakker (5) admet six pièces osseuses, rangées par paires, et une pièce isolée, placée au-devant des autres pour constituer le sternum. Cette dernière partie doit-elle être pour nous l’analogue des rudiments osseux que nous étudions chez l’homme? Il est difficile de se prononcer affirmativement. (6)

Chez les Reptiles, le sternum existe dans presque tous les ordres; mais pour les Batraciens, J. Fr. Meckel croit que chez plusieurs d’entre eux le véritable sternum n’a pas été aperçu, et qu’on a pris pour lui d’autres pièces osseuses; opinion qui for-

(2) Reil, Archives de physiologie, t. x, p. 351-352.
(4) Nobis verò prater omnes illa, quam tenet Geoffroy, placuit sententia, ob ingeniosa, quibus eam probare studuit, argumenta, eleganter in philosophià anatomica ab eo narrata, etc. loc. cit. p. 91.
(5) Sternum componunt sex ossium paria eum uno azygò; quae iterum ordine numerico distinguuntur, incipiendò a posteriori. — Gerbrands Bakker, Osteographia piscium, etc., cap. III, sect. 3, p. 70. Groninga, 1832.
(6) Os quadratum sterni, seu crista azygà, numero propria septimum, lamina est simplex, oblongo-quadrata, etc., cap. III, sect. III, § 70. p. 72.
G. BRESCHET — Squelette des Vertébrés.

tifie ce que nous avions avancé sur la difficulté de déterminer; dans beaucoup de cas, la pièce qui réellement est le sternum.

J. Fr. Meckel n’admet pas de sternum chez le Proteus anguinus, bien que ce reptile ait, comme tous les Tritons, deux lames cartilagineuses minces, unies aux os de l’épaule, et moins étendues que celles des Tritons (1). Mais pour démontrer que ce sternum n’a pas été aperçu chez les Batraciens, il regarde comme appartenant au sternum le cartilage ypsiloïde sus-pubien des Salamandres terrestres et aquatiques, lequel est allongé, mince, partagé antérieurement en deux branches divergentes, longues d’environ quatre lignes, situé sur la ligne médiane au-devant de la symphyse du pubis, et fixé à son extrémité antérieure (a). À ce cartilage qui, quoique situé fort en arrière, est l’analogie du sternum, il faut joindre, chez les Salamandres, deux autres pièces plus petites qui se trouvent dans la région des membres antérieurs. Ce premier cartilage rappelle, suivant J. F. Meckel, non-seulement la disposition de plusieurs poissons, mais il est même l’indice du développement plus considérable du sternum que l’on remarque sur plusieurs Sauriens, et qui est surtout extraordinaire chez les Chéloniens: (3)

Ainsi le sternum des Batraciens urodèles serait formé de trois portions séparées les unes des autres, et dont celle du centre serait rejetée en arrière et sur le pubis, mais cependant sans perdre ses connexions avec le thorax, parce que le rachis, dans toute son étendue, présente des appendices costiformes. (4)

On peut aussi trouver des dispositions analogues à celles des Salamandres dans les Batraciens anoures, suivant J. F. Meckel.

(1) Vi troverebbe qualche piccola differenza, arregnachì che le due cartilagini, che fanno le vece dello sterno, nelle Salamandra sono larghe assai e si stendono sul petto per modo, che la sinistre è in parte coperta dalla cartilagine destra; né' Protei per lo contrario queste cartilagini sono, data la proporzione, si piccole, che neppure si toccano, o se si toccano, ciò non è che ne' lembi e soltanto in alcuni particolari movimenti delle gambe anteriore.—M. Rusconi. Del Proteo anguino di Laureuti monografia, etc., p. 48. Pavia, 1819.

(a) Traité général d’anatomie comparée, t. 11, p. 11.

(3) Traité général d’anatomie comparée, traduction française; t. 11, p. 551.

(4) Voyez les figures que nous donnons du squelette des Salamandres aquatiques.
kel (1). En effet, C. G. Kloetzke (2) a vu sur le bord supérieur du sternum du Rana cornuta, deux pièces cartilagineuses triangulaires qu'on peut, sans forcer les rapprochemens, comparer aux os que nous avons indiqués sur plusieurs Mammifères, et que nous avons décrits chez l'homme.

Dans le Pipa, on a signalé une disposition analogue à la précédente, mais plus singulière encore et dans des proportions plus grandes. La dissertation de F. G. Breyer, soutenue sous la présidence de Ch. Asm. Rudolphi (3), contient la description faite par ce professeur célèbre du sternum de ce reptile portant un appendice sus-sternal.

Parmi les Chéloniens, les Trionix présentent surtout des pièces analogues à nos os sus-sternaux. On voit partir du bord antérieur du sternum, au-devant d'un arc osseux comparable à l'os furculaire, deux lames osseuses se prolongeant en avant et parallèlement l'une à l'autre comme deux cornes. Rudolphi, qui les a décrites (4), les compare à des côtes (5), et une pièce cartilagineuse placée sur la partie antérieure et moyenne du pubis, précisément sur la symphyse, est considérée comme une dépendance du sternum (6). L'auteur la nomme cartilage xyphoïde.

(1) Loco citato, p. 553-554.
(2) De Rana cornuta, Berolini, 1816. — Sternum : a more solito defleectit. Partes antice cum furculis et claviculis coalitœ inter se libera, quid? quod pars dextra sinistrae incommitt; posterior autem scutiformis marginibus anteriore recto, lateralibus convexis, posterioriem marginato instructa, undique libera utrinque appendicem cartilagineam oblongam offerit, quod figura tercia benè exprimitur.
(3) Sternum maximum, ad testudinem scutum sternale ferè accedens quinque constituitur partibus, in mare osseis, in femina liet adulta et quam ille majore, prout in junioire, plurimum partem cartilagineis. Quinque illarum sterni partium nobis supra dictarum antice et exigui ante furculam posite; media triplex utrinque parte constant, nimium altera inter furcas et clavicas, media inter clavicas et posica laterali inter clavicas et appendicem sterni sita; utima tandem pars, sive appendix satis magna et rotundata. Cuius sceletum edem parte caruissae videtur, cuius liceit maxime notabilis, nullam mentionem fecit. Observationes circa fabricam Rana pipax, Berolini, 1811.
(5) Page 22.
(6) P. 33, i, fig. 2, pl. 2. Cartilago Xyphoidea et symphisi ossium pubis prominens convenit sterno abdominali Crocodili.
Dans les Sauriens, on voit, d'une part, s'élever de la partie moyenne du sternum une éminence ensiforme comme celle qui, chez beaucoup de Vertébrés, occupe l'extrémité postérieure du même os. D'autre part, on distingue sur toutes les vertèbres cervicales des apophyses transverses dont la racine est double: l'une partant du corps de l'os, et l'autre des masses latérales, et dont le sommet, dirigé en dehors et en arrière, se prolonge plus ou moins, et constituent une succession de petits arcs osseux entuillés et représentant d'une manière incontestable des côtes rudimentaires. Ce qu'il y a encore de remarquable, c'est que les pièces les plus voisines de la tête ne sont pas les plus courtes. Les deux premières apophyses transverses de l'atlas ont une longueur bien supérieure à celle des autres apophyses cervicales. C'est au moins ce que je vois sur plusieurs squelettes de Crocodiles du Gange que j'ai sous les yeux.

La même incertitude ne se rencontre pas, chez les oiseaux, pour indiquer l'os qui est réellement le sternum, parce que cet os a non-seulement des caractères généraux certains, mais encore des caractères particuliers assez prononcés et assez constants pour servir de base à une classification ornithologique, ainsi que l'a démontré M. de Blainville. Cependant si nous voulions prendre le sternum avant son évolution complète et lorsque les pièces dont il est formé sont encore épiphysaires, la détermination de ces pièces diverses ne serait pas sans quelque embarras et pourrait faire surgir plus d'une contestation.

Ce que nous disons du sternum des Oiseaux est applicable à celui des Mammifères, où l'incertitude ne peut s'élever que pour la détermination des pièces constituant cet os.

Par exemple, chez les Monotères, la partie antérieure du sternum est au maximum de son développement, et présente la figure d'un T; circonstances qui sont regarder par J. F. Meckel (1) cette première pièce comme un os à part, tandis que Rudolphi (2), Éverard Home (3) et M. Geoffroy-Saint-Hilaire (4),
croient qu'elle est l'analogue de la fourchette des oiseaux. Cette opinion est confirmée par J. F. Meckel, dont les objections nous paraissent victorieuses : 1° le véritable analogue de la fourchette est situé chez les Monotrièmes, et comme os propre, sur la branche transversale de l'os en T; 2° les Oiseaux, et plus encore les Reptiles, offrent une pièce sternale analogue à celle dont il est question. Il faut enfin ajouter à toutes ces raisons, qu'il existe, chez beaucoup d'animaux, des vestiges de cette disposition, consistant en une apophyse chez les uns, en une épiphyse chez les autres, qui dépasse le niveau de la première côte, et qui, chez les Phoques, forme une éminence qui n'est ni soudée, ni unie au reste du sternum. (1)

Enfin, une dernière preuve de la difficulté de déterminer les diverses pièces du sternum, c'est que MM. Geoffroy-Saint-Hilaire et Serres, qui ont long-temps médité sur ce sujet, ne sont point d'accord entre eux. M. Serres croit que M. Geoffroy s'est trompé en appelant du nom d'ento-sternal la seconde pièce du sternum, et assure que l'ento-sternal est représenté dans l'homme par la grande pièce. (2)

Nous avons pensé devoir entrer dans ces considérations historiques d'anatomie comparée avant d'en venir au fait que nous avons observé, et dont nous donnons l'image et la description.

Pendant l'exercice de nos fonctions de chef des travaux anatomiques de la Faculté de Médecine de Paris, nous avons eu assez souvent l'occasion de rencontrer des sternum dont l'extrémité supérieure était surmontée de deux noyaux osseux ou cartilagineux. Nous en avons remis plusieurs exemples à Béclard, qui s'occupait alors d'un travail sur l'ostéose, et il en a dit quelques mots dans un supplément de son mémoire (3). Mais ces petites pièces osseuses n'ayant pas été ou que fort incomplète-

---

(1) Traité général d'anatomie comparée, traduction française, t. iii, p. 454.
(3) « Il existe quelquefois, et j'en possède des exemples, sur des sternum d'environ trente-cinq ans, deux points osseux pisiformes, placés, l'un de chaque côté, sur l'ébauchure trachéenne du sternum. Ces points, que l'on peut appeler pré-sternaux ou sus-sternaux, sont peut-être le rudiment de la fourchette ou clavicule furculaire de certains animaux. », p. 83.

X. Zouz. — Août.
ment indiquées par les ostéographes, nous pensons devoir appeler l'attention des anatomistes sur ce point, afin d'arriver avec certitude aux analogues de ce développement d'une pièce osseuse qui est trop régulière sous le rapport de sa situation, de son volume, de sa figure et de sa composition organique, pour ne pas être considérée comme un état normal.

Nous avons de nouveau observé plusieurs cas d'existence de ces pièces osseuses à la partie supérieure du sternum, et ne voyant pas dans les traités d'ostéologie d'indications suffisantes de ces noyaux osseux, nous avons pensé qu'il ne serait pas sans intérêt de les décrire et de les faire représenter. Les pièces, d'après lesquelles cette description et les dessins ont été faits, sont ici sous vos yeux et seront déposées par nous dans le Muséum d'anatomie de la faculté de Médecine.

Nous avons enfin rencontré plusieurs sternum de très jeunes sujets, où il existait deux rangées latérales de noyaux osseux; ces pièces étaient agencées les unes dans les autres sur chaque côté du sternum, ou alternes, ce que J.-Fr. Meckel (1), Béclard et M. Serres ont déjà très bien indiqué. Le nombre de ces pièces n'était pas le même sur les divers sternum que nous avons eus à notre disposition. Tantôt nous avons pu compter quatre pièces bien distinctes de chaque côté, tantôt cinq, et une seule fois six, rangées de la manière la plus régulière, ne formant pas seulement des noyaux osseux de volumes variés, mais des pièces anguleuses s'adaptant les unes aux autres dans les espaces triangulaires qu'elles formaient sur la ligne médiane du sternum. Nous avons aussi rencontré deux rangées de noyaux osseux dans toute la longueur du sternum, mais plus souvent dans sa moitié inférieure que dans sa partie supérieure. Nous avons vu le sternum bifide dans toute ou dans une partie de son étendue. Cette division partielle existait, soit à la partie supérieure, jusqu'au-delà de la moitié de la longueur de l'os, soit à la partie inférieure, depuis l'appendice xiphoïde jusqu'au milieu du sternum; et enfin sur une fille adulte, infirmière à l'hôpital des vénériens de Paris, nous avons rappelons avoir con-

(1) Bevtrage zur vergleichenden anatomie, etc. t. u, cah. r, p. 146, pl. t, fig. 8.
staté que le sternum offrait une large fissure dans presque toute sa longueur, et les deux pièces osseuses laissaient entre elles plus d'un pouce d'écartement. Dans cette large déhiscence on sentait un plan fibreux résistant, et aucun organe intérieur ne faisait hernie. Ed. Sandifort (i) parle aussi de ces ouvertures du sternum, et dit avoir vu cet os être formé, chez l'adulte, de six ou sept pièces ; mais avant lui, Sénac, Martinez, Buttner, Sténon, Heister, etc., avaient signalé cette ouverture du sternum sur sa ligne médiane ; état qui est en rapport parfait avec le mode de développement du thorax que Hazvey et Wolf ont depuis longtemps fait connaître.

Nous avons fait représenter sur la planche que nous joignons à ce Mémoire, plusieurs sternum choisis parmi ceux que nous possédons aujourd'hui. L'un (fig. 2) est celui d'un jeune sujet ; il présente manifestement huit pièces. La première, ou la supérieure, ne porte plus de traces des noyaux primitifs de sa formation. Cependant, pour les observateurs, il existe la partie médiane de la face postérieure une lamelle plus blanche, plus compacte, qui n'est perforée d'aucun trou vasculaire, et c'est précisément sur cette ligne qu'existait la soudure des deux noyaux primitifs. Nous pouvons en dire autant de la seconde pièce, où cette ligne médiane est indiquée d'une manière un peu plus prononcée. Quant à la troisième pièce, elle est formée de deux parties séparées l'une de l'autre par un sillon qui ne permet pas d'errer sur les éléments constitutifs originels de cet os. Non-seulement la quatrième pièce présente aussi un sillon médian, témoignant que deux noyaux osseux séparés la constituent, mais encore on remarque à sa partie supérieure une large ouverture dont le plus grand diamètre est longitudinal. Enfin, l'os ensiforme est constitué par une seule pièce ossifiée sur tous ses points. L'extrémité claviculaire de cet os offre tout-à-fait en dehors l'insertion du cartilage de la première côte au sternum, plus en dedans deux facettes articulaires, encroûtées de cartilages, pour recevoir la clavicule, et vers la partie

(i) In aliis adultorum tamen hominum, sex septemve distinctas partes notavi.
Ed. Sandifort. Observ. anat. pathol. t. i, cap. x, lib. iii, p. 133.
la plus interne de ces surfaces, deux productions cartilagineuses dirigées en haut et inclinées un peu en arrière, séparées l'une de l'autre par l'intervalle qu'on nomme la fourchette. Ces corps rudimentaires non-seulement sont plus en dedans, mais encore ils sont inclinés plus en arrière que les surfaces qui reçoivent la clavicule. Ces productions se trouvent donc tout-à-fait en arrière et en dedans de l'insertion sternale du muscle sterno-mastoïdien. Sur cet os desséché, ces corps n'étant que cartilagineux, sont faiblement exprimés; mais dans l'état frais ils étaient très distincts.

Sur un autre sternum (fig. 3) qui appartenait à un sujet adulte, cet os est composé bien manifestement de trois portions. La première pièce est encore mobile sur la seconde, et la troisième a été séparée et enlevée. Ici l'on voit sur l'extrémité cervicale ou supérieure de cet os, tout-à-fait en dehors, deux larges surfaces articulaires, concaves de dedans en dehors, lisses, destinées à recevoir la clavicule. Ces surfaces sont séparées par une crête dirigée de devant en arrière, de deux autres facettes, beaucoup moins grandes, circulaires, regardant en haut, un peu en arrière et en dehors, lesquelles surfaces sont surmontées de deux noyaux osseux, arrondis sur tous les points de leur étendue, excepté sur le côté par lequel ils sont en rapport avec le sternum. Quoique placés sur l'extrémité supérieure ou claviculaire du sternum, cependant une ligne transversale qui séparerait cet os en deux moitiés égales, l'une antérieure et l'autre postérieure, laisserait en arrière les deux noyaux osseux, comparables, bien que plus volumineux, aux os pisiformes du carpe. Ces deux os sont unis entre eux, vers leur côté interne, par un ligament transversal. Une membrane synoviale recouvre toute la surface par laquelle ils sont en contact avec le sternum, et ils glissent sur ce dernier os auxquels ils sont unis par de petites fibres ligamenteuses circulaires. C'est donc une véritable diarthrose temporaire.

Sur deux autres sternum appartenant à des sujets adultes, car sur l'un (voy. pl. 8, fig. 1er), les trois pièces principales de l'os sont non-seulement intimement unies les unes aux autres, mais encore continues, et sur l'autre sternum les cartilages costaux
sont en grande partie ossifiées. Sur ces deux os, les petites pièces osseuses dont nous faisons l'histoire, bien qu'unies solidement au sternum, permettent de voir bien nettement la ligne de séparation du sternum avec les os sus-sternaux. (Voy. pl. 8, fig. 1—1', fig. 2, fig. 3, 3', fig. 4, 4').

Sur toutes les pièces que nous avons observées, comme sur toutes celles que nous avons fait représenter, on reconnaissait que les os sus-sternaux n'étaient pas régulièrement arrondis, car ils sont un peu allongés transversalement et aplatis sur le point correspondant au sternum.

Les petites pièces osseuses, que nous signalons ici, peuvent-elles être données comme une preuve du mode de développement du sternum, par deux noyaux latéraux, et confirmer la loi de symétrie de l'ostéogénie, proposée par M. Serres? Nous répondrons plus tard à cette question (1). Ces pièces, surmontant le sternum, doivent avoir des analogues dans la chaine animale. Les comparerons-nous aux deux apophyses conoides, qui sont placées à l'extrémité antérieure du sternum du Tatou noir (2) ou de l'Oryctérophage (3), ou mieux encore, à la pièce en forme de T qui couronne le sternum de l'Échidné et de l'Ornithorhynque (4)? Mais la base de cette dernière pièce est une tige unique, tandis que chez l'homme il y a deux pièces latérales bien distinctes. Une circonstance digne de remarque, c'est que ces pièces sont unies par un cartilage à la partie supérieure du sternum ou séparées de cet os en formant une véritable articulation. Les surfaces contiguës ressemblent à des surfaces articulaires, sans substance cartilagineuse intermédiaire; on voit simplement quelques faisceaux ligamenteux en dehors, sur divers points de la circonférence.

Dans l'Échidné et l'Ornithorhynque, les pièces sus-sternales (5)

(2) Voyez G. Cuvier, Recherches sur les ossements fossiles, t. v, 1re partie, pl. io.
(3) L. cit. pl. 12.
(4) Voyez la monographie de Jellé sur l'Ornithorhynque.
(5) Voyez Recherches sur les ossements fossiles, t. v, part. 1, pl. 13, fig. 5 f. f. n. pl. 14, fig. 21 a—w, f. f. n.
très bien représentées et décrites par Rudolphi, J. F. Meckel, G. Cuvier, M. Geoffroy Saint-Hilaire, etc., s’articulent avec le scapulum, tandis que chez l’homme les deux os dont nous parlons sont complètement étrangers à l’omoplate.

Nous en dirons presque autant pour la pièce osseuse dont est armée la partie antérieure du sternum des Phoques, et que G. Cuvier a représentée sur le squelette du Phoque à ventre blanc (1). D’après l’examen que nous avons fait de cette pièce, sur le squelette, nous avons reconnu qu’elle est grêle, unique, située à la partie médiane de l’extrémité du sternum, tandis que nos deux osselets sont placés sur les côtés de l’extrémité cervicale du même os.

Les personnes qui comparent la ceinture thoracique à la ceinture pelvienne, pourraient peut-être trouver un rapport de plus entre ces deux parties, en faisant de nos os sus-sternaux les analogues des os marsupiaux. On ne manquerait pas, pour corroborer cette comparaison, de faire remarquer que les animaux, où les os marsupiaux sont au maximum de leur développement, offrent aussi, au-devant de leur sternum, les pièces osseuses dans les proportions les plus grandes, et que chez l’homme l’os marsupial n’étant qu’à l’état de vestige, les pièces du sternum correspondant à celles qui présente la forme d’un T dans les monotrèmes, ne pouvait aussi s’offrir que comme vestige. Mais dans les reptiles, et principalement parmi les Batraciens, les Salamandres possèdent une pièce cartilagineuse ou osseuse au-dessus du pubis, laquelle a été d’abord indiquée par Townson (2), puis par Funk (3) dans la Salamandre terrestre, et que depuis bien long-temps nous avons signalée dans les Tritons ou Salamandres aquatiques, et cependant le sternum de ces mêmes animaux ne porte rien de comparable au cartilage en Y ou ypsiloïde placé sur le pubis. (4)

(1) Recherches sur les ossemens fossiles, t. v, part. 1, pl. 17, fig. 1.
(2) Observationes physiologicae de Amphibiis, Roberti Townson, Göttingæ, in-4, 1795, tab. 15, 9, Cortilago ypsiloidea.
(4) Voyez la figure que nous donnons ici du squelette de la Salamandre aquatique.
Ce processus, bien que moins marqué dans d'autres reptiles, n'en existe pas moins. Lorenz signale dans les Chéloniens (1) cette apophyse que Wiedemann, bien auparavant, avait fait connaître, et il a raison d'assurer qu'on la voit aussi sur le pubis du Tupinambis, du Monitor (2), de l'Iguane (3), etc.

Après avoir passé en revue toutes les dispositions analogues à celles de deux osselets, et qu'on peut apercevoir sur le sternum des animaux vertébrés des diverses classes, ne devons-nous pas arriver à faire un rapprochement pour établir des analogies et donner une explication.

Nous commencerons par dire qu'aucune des analogies qu'on voudrait reconnaître entre ces petits os et des épi-sternaux ou pièces osseuses faisant partie constituante du sternum, ne nous paraît pas recevable, bien que nous admettions la formation du sternum par deux séries de noyaux osseux latéraux. Nous ne reconnaissions pas non plus de rapprochement possible entre nos deux petites pièces osseuses et l'os furculaire des oiseaux ou l'os en T des monotèmes.

Pour nous, ces deux noyaux osseux sont des rudiments de côtes. Voici les raisons sur lesquelles nous appuyons notre sentiment :

1° Une loi bien réelle et depuis long-temps reconnue, c'est que, dans les formations organiques, la nature ne fait pas de


(2) E medio osse et quidem e superiore exteriore superficie sese extendit ex oblique in partes inferiores processus quidam tennis, qui simulis est anteriori ossis pubis processus in testudinibus, § 29, p. 29.

(3) Lacertæ iguanae L. pubis in osse inventur etiam pubis ossis processus, § 35, p. 34.

* Wiedemann's Arch. fur zoologie und Zoolog. part. 11, p. 206.
saut, mais procède par gradations, et les parties qui sont permanentes dans certaines classes animales, ne s'offrent plus que comme des états transitoires dans d'autres classes, et leurs caractères ne paraissent alors que faiblement exprimés par quelques vestiges.

Dans l'espèce humaine, la véritable première côte est, suivant nous, imparfaitement formée. On voit, surtout chez des sujets adultes, au-dessus du sternum et plus en dedans que la clavicule, un noyau osseux de chaque côté, et vers l'apophyse transverse de la septième vertèbre cervicale une pièce osseuse allongée, dirigée en avant, en dehors et en bas; mais cette côte, bien que constituée par des vestiges, offre des caractères qui ne permettent pas de douter de son existence. Depuis un temps bien éloigné de nous, on a reconnu que la septième vertèbre cervicale, par son développement, par la proéminence de son apophyse épineuse, par la forme arrondie de son ouverture centrale, quelquefois par l'absence du trou destiné dans les autres vertèbres à l'artère cérébrale postérieure, ressemble beaucoup plus aux pièces de la tige rachidienne dorsale qu'à celle de la colonne cervicale. Les anatomistes savent que la racine antérieure de l'apophyse transverse de cette septième vertèbre, se développe par un noyau osseux, distinct et séparé, que ne présentent point les autres vertèbres cervicales. Dès les premiers mois de la vie intra-utérine, se manifeste ce point d'ossification costiforme, comme l'appelle quelques anatomistes. Vers 6 ou 7 ans il s'unit, par son extrémité interne qui était séparée avec la partie latérale du corps de la vertèbre, sur un tubercule sortant de cet os et au-devant de l'apophyse transverse qu'elle dépasse bientôt de quelques lignes, d'un pouce, et souvent de beaucoup plus, pour former le rudiment d'une côte. Nesbitt (1), Hunauld (2), Sue (3), etc., ont signalé ces vestiges osseux sans en indiquer la nature. J.F. Meckel (4), un des premiers a insisté

(1) Ostéogénie, p. 66.
(2) Mémoires de l'Académie des sciences, 1740, p. 537.
(3) Mémoires présentés à l'Académie des sciences, t. 11, p. 572.
pour faire reconnaître dans cette épiphysie une avorton de côte, et Béclard (1) partage son opinion.

Cette disposition d'un rudiment de côte, en rapport avec l'apophyse transverse de la septième vertèbre cervicale d'une part, et les noyaux osseux épisternaux d'autre part, démontrent cette succession d'analogies chez tous les Vertébrés, depuis l'homme, les mammifères, les oiseaux, jusqu'aux reptiles. On ne connaissait pas aussi bien, pour la première de ces classes, les analogies de rudiments de côtes tirées des apophyses transverses, qu'on le savait pour les oiseaux et les reptiles.

Dans l'homme, on rencontre souvent, sur les apophyses transverses lombaires, des rudiments de côtes comparables à la pièce osseuse de la septième vertèbre cervicale. Nous savons que, sur les grands Sauriens, ces mêmes pièces existent, et qu'un petit appareil fibro-cartilagineux représente des côtes abdominales et même un sternum. La colonne rachidienne cervicale offre, indépendamment des apophyses transverses, des apophyses latérales et antérieures, qui sont bien aussi des rudiments d'arc costaux. C'est du moins ce que j'aperçois sur le squelette d'un Crocodile que je possède (Crocodilus biporcatius). (2)

Si ces rudiments de côtes existent sur les parties latérales du rachis, si sur les grands Sauriens nous voyons dans l'épaisseur des parois de l'abdomen cette tendance à conserver la continuation des formes thoraciques, pourquoi dans la région du cou n'admettrions-nous pas la même tendance osseuse? Est-il possible de la contester chez les oiseaux et les reptiles? On ne viendra pas nous objecter que pour admettre notre treizième côte rudimentaire, représentée par notre noyau osseux, sus-sternal,

(1) Nouveau journal de médecine, t. 16, p. 68. — Memoire sur l'Ostéose.
(2) Ce sont principalement les Crocodiles qui éclairaient l'anatomiste sur l'analogie qui existe entre les côtes et les apophyses transverses des vertèbres. Le quatrième vertèbre du cou offre en-dessous et sur la partie latérale de son corps, deux osselets aplatis, articulés et mobiles, dont la longueur augmente à mesure que les vertèbres cervicales se rapprochent de la poitrine.... Il en est à peu-près de même dans les oiseaux; car les styles osseux dont nous avons précédemment parlé, et qu'on remarque en devant sur le corps des vertèbres cervicales, ne sont autres que les rudiments des côtes avortées, dont les premières, beaucoup plus longues, ne viennent pas même encore se réunir au sternum. — C. Duméril. Mémoires de zoologie et d'anatomie comparée. — Considérations sur les rapports de structure qu'on peut observer entre les os et les muscles du trone chez tous les animaux, p. 88, Paris, 1807.
et par la pièce ajoutée à l'apophyse transverse de la septième vertèbre cervicale, il faudrait un contact, une véritable continuité entre ces deux points osseux; car nous répondrions en citant l'exemple d'une disposition analogue sur un autre point du squelette. Le péroné des ruminans n'existe-t-il pas en deux portions, une à la partie supérieure et l'autre à la partie inférieure, et, malgré le manque de continuité entre ces deux pièces, quelque anatomiste a-t-il jamais refusé de les considérer comme représentant le péroné?

Ed. Sandifort donne la figure du thorax d'un homme adulte sur lequel on voit de chaque côté les rudiments vertébraux et sternaux des cinq premières côtes ne pas arriver au contact (1). Cet état pathologique rappelle parfaitement la disposition de l'appendice épiphysoir de la septième vertèbre cervicale, d'une part, et les noyaux osseux sus-sternaux de l'autre. L'anatomie normale comme l'anatomie pathologique, nous fournissent donc ici des lumières pour arriver à la connaissance des lois de l'organisme.

M. C. Duménil a, le premier, bien démontré l'analogie, disons plus, l'identité qui existe entre les apophyses transverses des vertèbres et les côtes (2). Nous pouvons, d'après ce principe, ramener, dans beaucoup d'espèces, au nombre normal les côtes qui sont en moins chez quelques animaux, comme celles qui paraissent être en plus chez quelques autres. C'est d'après l'application de ces mêmes principes que M. Thomas Bell (3) a démontré que l'anomalie présentée par l'Aï (Bradypterus tridactylus L.), auquel on accorde neuf vertèbres cervicales, était plus apparente que réelle. Dans la dernière édition de l'ouvrage sur le Règne animal de George Cuvier (4), on lit que l'Aï est le seul Mammifère connu jusqu'à ce jour qui ait neuf vertèbres cervicales, comme on l'avait déjà énoncé dans les Annales du Muséum (5), et comme Wiedemanu (6) et

(1) Observationes anatomico-pathologice, p. 135, lib. III, cap. x, tab. 5, fig. 4.
(2) Loc. cit.
(3) Observations on the Neck of the three-toed Sloth, Bradypterus tridactylus L.
(4) Règne animal, deuxième édition, t. 1, p. 252.
(6) Arch. für Physiologie, 1er cahier, t800.
Piso (1) l'avaient découvert bien auparavant; mais on est étonné que J. F. Meckel (2), si sécond pour trouver des analogies et pour ramener, par des rapprochemens, tous les organismes à des lois constantes, ait, ainsi que Baer (3), répété cette erreur. Il déclare que sur dix sujets de l'Aï ordinaire, ayant trouvé cette disposition de neuf vertèbres cervicales, elle ne peut plus être révoquée en doute. Disons cependant que G. Cuvier et J. F. Meckel ont bien reconnu que la huitième et la neuvième vertèbres cervicales de l'Aï ressemblent beaucoup plus aux vertèbres du dos qu'à celles du cou.

Mais M. Thomas Bell (4) est venu démontrer plus tard que l'Aï n'a réellement que sept vertèbres cervicales, car la huitième et la neuvième, considérées comme telles, portent des appendices costaux très prononcés, mobiles sur les apophyses transverses au moyen d'une véritable surface articulaire, et offrant tous les caractères de côtes rudimentaires. Cette disposition a été reconnue par M. Thomas Bell sur un squelette d'Aï dont les os sont articulés artificiellement, et sur le squelette d'un jeune sujet conservé dans l'esprit-de-vin (5). Nous serons aussi remarquer que le sternum de ce même animal présente sur son extrémité antérieure un appendice conique. Voilà donc l'anomalie ramenée aux lois ordinaires de l'organisme. Il en serait certainement de même des vertèbres cervicales des Cétacés, si l'on étudiait les points d'ossification que ces os présentent aux diverses phases de leur développement. D'après cette même loi de l'ostéogénie des apophyses transverses, on peut donc expliquer ces prétendues aberrations dans le nombre des côtes, qui étonnaient les anciens anatomistes. (6)

(1) De Indie utriusque re naturali, etc.
(2) Traité général d'anatomie comparée, traduction française par Riester et Sanson.
(3) Archiv. für Physiologie, etc.
(5) The first of these rudiments is small and slender, about 1/10ths of an inch in length, having a distinct rounded head at the articular extremity, receding the abruptly smaller and tapering to the apex. The second is considerably larger, and assumes more of the character of a short rib, etc.
(6) Galien parle de treize côtes comme d'un fait rare, et de quatorze comme bien plus rare
Hunauld dit qu'on conçoit facilement comment un homme peut n'avoir que vingt-deux ou vingt-trois côtes. Il cite l'exemple d'un squelette de sa collection, sur lequel la première côte bien formée postérieurement, et, articulée avec la première vertèbre dorsale, allait se joindre et se confondre avec la deuxième, qui, par cette union, devenait seulement plus large qu'elle ne l'est ordinairement (1). On ne conçoit pas aussi bien, suivant le même anatomiste, comment un petit nombre de sujets peut avoir une ou deux côtes de plus que n'en a le reste des hommes; car on ne peut pas admettre que la nature donne à quelques embryons le germe d'une ou de deux côtes qu'elle refuse à tous les autres: ce serait faire penser que toutes les productions singulières ou monstrueuses sont telles dès la première origine, ce qu'on aura bien de la peine à se persuader. Il explique cette disposition par le mode d'ossification de l'apophyse transverse de la septième vertèbre cervicale.

Dans l'arc antérieur de cette apophyse transverse, chez la plupart des sujets, on voit une pièce osseuse particulière, qui ne fait point corps avec le reste de l'apophyse, et qui est unie par un cartilage avec le corps de la même vertèbre. Cette pièce osseuse n'est point disposée en arc: elle va tout droit horizontalement: tantôt elle s'unit à l'arc postérieur et forme avec lui l'apophyse transverse; tantôt cette pièce n'est pas bornée par l'arc postérieur, elle passe au-delà, s'étend, et prend la forme d'une côte: alors l'arc postérieur n'a que la figure d'une apophyse transverse, telle que celles des vertèbres du dos. D'après cette idée de Hunauld (2), les côtes surnuméraires doivent toujours appartenir aux dernières vertèbres cervicales; alors ces côtes surnuméraires sont les premières du thorax, circonstance en harmonie avec l'explication que nous donnons de nos pièces osseuses sus-sternales.

Encore. Colombo, sur un sujet, n'en a trouvé que vingt-deux, et d'autres fois il en a rencontré vingt-cinq ou vingt-six. Riolan parle de onze côtes de chaque côté, et d'autres fois il en a vu treize. Des observations semblables ont été faites par Bartholin, Fallopio, Picolomini, Diemerbroeck, Ruysch, etc.

(2) Mémoires de l'Académie des sciences, année 1740.
Sue (1) va plus loin que ses prédécesseurs. On trouve suivant lui, sur certains sujets, une ou deux côtes surnuméraires qui rendent le thorax plus étendu; elles sont situées à la partie supérieure de la poitrine. Pour peu qu'on fasse attention lorsqu'on dissèque des fœtus, on voit que le principe de ces côtes surnuméraires s'y trouve toujours; c'est à tort que Hunauld n'a pas considéré ces os comme existant dans tous les sujets. (2)

J. F. Meckel voit dans ces apophyses de l'analogie avec certaines dispositions chez les Cétacés et les Tatous. (3)

Si l'existence de ces côtes surnuméraires n'est pas rare selon Hunauld, et si les noyaux osseux dont elles sont le développement se voient sur tous les sujets, suivant cet anatomiste comme d'après Sue, il doit paraître tout naturel que vers le point opposé, c'est-à-dire à la partie supérieure du sternum, il existe certaines dispositions indiquant le lieu sur lequel les pièces osseuses en connexion avec les apophyses transverses des dernières vertèbres cervicales doivent porter et s'unir. C'est en effet ce que nous avons observé, et les noyaux osseux sus-sternaux des côtes surnuméraires sont placés sur la ligne des facettes articulaires du sternum avec les cartilages costaux, en arrière de l'insertion des muscles sterno-mastoïdiens, et ne peuvent pas être considérés comme une ossification des fibres tendineuses de ces muscles. Les facettes articulaires que nous avons décrites, la mobilité de ces pièces chez plusieurs sujets, et la présence de cartilages, dans tous les exemples connus, entre les noyaux osseux et le sternum, en font des os distincts, et autres que les pièces constitutives du sternum, ou des ossifications des tendons d'insertion du muscle sterno-mastoïdien.

Nous pourrions citer un grand nombre d'auteurs qui ont parlé plus ou moins longuement, soit du nombre inégal des côtes de l'un et l'autre côté, soit surtout du nombre plus grand

(1) Mémoires présentés à l'Académie royale des sciences par divers savans, 1755.
(2) Mémoires cités, p. 584.
(3) Analogiam inédum Cetacæis et Dasypo, quibus vertebrae cervicales conferunt et cum piscibus, quibus costae ad caput usque sapè accedunt, fieri, neminem fugere potest. — De duplicitate monstruosa, p. 30.
de ces os résultant d’arcs osseux surnuméraires attachés aux apophyses transverses des dernières vertèbres cervicales ou des premières lombaires, arcs osseux plus ou moins étendus ou complets; ainsi Columbo (1), Riolau (2), Bartholin (3), Boehmier (4), Monro (5), Bertin (6), Haller (7), Morgagni (8), Léve-eling (9), Sandifort (10), Rosenmüller (11), J. Gemmil (12), J. F. Meckel (13), mais surtout G. Van Doeversen (14), ont parlé de ces anomalies des côtes sans donner de détails sur l’état correspondant du sternum et sur l’existence des pièces osseuses épisternales, c’est pourquoi nous avons voulu insister plus spécialement sur ces dernières; car, pour des côtes surnuméraires et surtout pour des épiphyse adhérentes aux apophyses transverses cervicales, nous trouvons cette disposition trop connue pour en parler. On doit concevoir que professant l’anatomie depuis plus de trente ans, et ayant été placé pendant près de vingt ans à la tête des travaux anatomiques de la Faculté de médecine, où l’on recevait plus de quinze cents cadavres chaque année, pour servir à l’enseignement de ce corps savant, nous avons eu de nombreuses occasions d’observer des anomalies anatomiques. G. Van Doeversen (15), qui consacre un article aux variétés des dispositions du sternum, se tait sur l’exis-
G. Bréschet. — Squelette des Vertébrés.

tence des pièces dont nous parlons; Édouard Sandifort (1) et J. F. Meckel (2), qui ont étudié toutes les variétés et les abnor-
mités du squelette de l'homme et des animaux, ne parlent
point des petits os dont nous traitons ici.

Les deux petits os, situés au-dessus du sternum, derrière
les insertions des muscles sterno-mastoïdiens, et en dédaus de
l'articulation des clavicules, n'appartiennent pas au sternum
comme partie constitutive, mais sont des vestiges de côtes,
formés par des noyaux cartilagineux, puis osseux, séparés et
distincts du sternum, offrant une sorte d'articulation légè-
rement mobile dans le principe, et finissant par se souder avec
le sternum, comme on voit les cartilages des côtes, et surtout
de la première, s'unir au sternum et passer à l'état osseux. Ces
pièces sus-sternales sont donc au sternum ce que sont aux
apophyses transverses des dernières vertèbres cervicales les ap-
pendices osseux que beaucoup d'anatomistes ont indiqué chez
l'homme, et qu'on sait exister constamment et à l'état normal
sur les oiseaux, les grands Sauriens, et, parmi les mammifères,
sur l'Aï ou Brachyte tridactyle, etc., etc.

M. Morren (3) a fait remarquer que G. Cuvier (4) a cru reconnai-
tre un singulier antagonisme entre les développements respec-
tifs de l'appareil sternal et celui des côtes chez tous les Reptiles.
En effet, suivant ce grand naturaliste, les Grenouilles ont un
sternum et point de côtes; les Serpens, des côtes et point de
sternum; les Tortues, des côtes soudées à la carapace et un sternum confondu dans le plastron; le Crocodile et les Lézards, des
côtes parfaïtes, mais un sternum en grande partie cartilagineux.
Ces deux ordres de pièces osseuses, d'après cet énoncé, se-
raient pour leur développement dans une raison inverse. Il ne
faut regarder les côtes que comme des pièces secondaires, des

(2) Manuel d'anatomie descriptive. — Anatomie pathologique;— De duplicitate monstrosa
commentarius, Halle et Berolini, 1815.
(3) Observations ostéologiques sur l'appareil costal des Batraciens, Mémoires de l'Académie
royale des Sciences et Belles-Lettres de Bruxelles, t. x.
Les parties principales sont représentées par les deux rachis, pour parler la langue de J. Fr. Meckel : le rachis proprement dit et le sternum. Les côtes sont dans leur apparition, leur nombre, leur direction subordonnées à ces deux parties, et le sternum, loin d'être développé suivant une loi d'opposition avec les côtes, l'est réellement d'après une loi de correspondance et d'harmonie.

Ajoutons à ces observations que non-seulement le degré de développement des côtes et du sternum ne sont point dans un état d'antagonisme, mais que tout cet appareil osseux est dans une intime dépendance de certaines fonctions, la respiration, la digestion et surtout les mouvements. Partout où il faudra des mouvements bornés, une capacité de la cavité formée par les os, peu variable dans ses diamètres et surtout une grande solidité, les côtes et le sternum seront à leur maximum de développement sous le rapport du nombre comme sous celui de l'étendue. Si une mobilité, une grande flexibilité en tous sens conviennent, et surtout s'il importe que les régions thoracique et ventrale puissent permettre aux organes respiratoires et digestifs de prendre momentanément un grand volume; alors le sternum devient très court, mince, flexible, les côtes ont de longs cartilages, ou même le sternum disparaît entièrement; alors les côtes sont courtes, mobiles, rejetées en dehors, et parfois ne sont plus que rudimentaires ou que des épiphyses des éminences transversaires vertébrales.

Ces côtes rudimentaires seront espacées et dirigées en dehors, si les mouvements latéraux du tronc doivent être étendus; c'est ce qu'on voit sur les Ophidiens, les Batraciens urodèles, etc. ; mais si les mouvements latéraux et ceux dans quatre sens cardinaux doivent être nuls ou presque nuls, alors les rudiments de côtes, ajoutés aux apophyses transverses, sont inclinés les uns sur les autres et comme entuillés : c'est cette disposition de ces rudiments qui existe sur la colonne cervicale des Crocodiles. Quel que soit le degré de mobilité de la colonne vertébrale, quelle que soit la longueur du sternum, on voit toujours dans la région cervicale, comme dans la région abdominale, surgir, d'une part,
des rudiments de côtes du sommet des apophyses transverses, et s'élever du *sternum* un appendice xiphoïde, unique ou double, de son extrémité cervicale comme de son extrémité abdominale, et ces éminences sont des témoins irrécusables de l'existence de cette loi de correspondance du développement des côtes sur deux points opposés, les vertèbres et le *sternum*, c'est-à-dire les deux rachis, comme le appelle J. F. Meckel. L'apparition des pièces osseuses sus-sternales est donc un phénomène qui vient confirmer cette loi.

L'épaule prend-elle un point d'appui fixe sur le thorax, le *sternum* est très développé vers son extrémité cervicale, et articulé solidement aux côtes, pour recevoir la clavicule; alors il ne se prolonge pas vers la tête ou ses prolongements ne sont que des vestiges. L'abdomen doit-il avoir un grand développement, le *sternum* est court, et toutes les côtes n'arrivent pas jusqu'à lui. Le vol est-il le mode particulier de progression des animaux, cet os est large pour offrir une grande surface aux insertions des muscles pectoraux, surface qui devient moins étendue, si l'oiseau est nageur; mais alors le *sternum* est taillé en carène.

Les apophyses transverses et les côtes sont pour leur développement en raison inverse de l'étendue et de la facilité des mouvements; cependant, chez quelques animaux, ces apophyses sont dans des conditions entièrement contraires à cette règle générale, c'est qu'alors, loin de gêner les mouvements de locomotion, elle les favorise. Le *Dragon volant* (*Draco viridis*) peut être cité comme un exemple de ces cas exceptionnels (1). Sa poitrine est formée de côtes et d'un *sternum*; de la base du thorax jusqu'au basin, on voit neuf apophyses transverses très prolongées qui soutiennent de larges replis de la peau, pour former des espèces d'ailes. Ici le développement de ces apophyses est donc en rapport direct avec la locomotion, et vient confirmer la loi que le développement des organes est toujours subordonné aux fonctions et à leur mode d'exercice. Ainsi les apophyses transverses

---

sont volumineuses, longues, s'unissent à un sternum solide, quand il faut plus de solidité que de mouvement: elles sont peu exprimées ou portées directement en dehors et sans avoir de point d'appui sternal, si les mouvements doivent être variés, étendus, et les cavités splanchniques de capacité très variable; ou bien elles se dirigent les unes sur les autres, sont entuillées dans la région cervicale, tandis qu'elles n'existent pas ou simplement à un degré rudimentaire sur la région caudale. C'est ce qu'on observe sur les Sauuriens, qu'on peut, sous ce rapport, comparer aux Cétacés, dont les vertèbres cervicales soudées ne permettent encore aucun mouvement latéral, d'abaissement ou d'élevation, la tête devant vaincre la résistance du liquide, tandis que la queue est flexible, parce qu'elle représente le gouvernail qui porte l'animal dans telle ou telle direction.

Chez les reptiles urodèles, les Salamandres et les Tritons, l'épaule et le sternum ont un peu plus de solidité que chez les Anoures, et moins que chez les Lézards et les Crocodiles, parce que les premiers se servent moins de leurs membres thoraciques que les derniers; mais, chez les Anoures, particulièrement les Rainettes et les Grenouilles, la locomotion étant un saut, il fallait pour les membres pélviens un point d'appui solide sur le bassin. Sur tous ces animaux, le degré de solidité de l'épaule indique le mode de locomotion.

Chez l'homme nous trouvons une grande mobilité de la tête sur le rachis, et une étendue de mouvement de la colonne rachidienne, qui va en diminuant de l'axis à la septième vertèbre; c'est aussi dans une progression opposée que paraissent et se développent les apophyses transverses. Inférieurement la plus grande étendue du mouvement est entre la dernière vertèbre dorsale et la première lombaire. Nous trouvons que la douzième vertèbre du dos diffère de toutes les autres pièces du rachis; car elle seule manque d'apophyse transverse.

Nous devons donc en définitive considérer les apophyses transverses et les appendices osseux qui leur appartiennent d'après les lois de l'ostéogénie, ainsi que l'a démontré M. Ca-
rus (1) comme en rapport de développement avec le sternum et avec les pièces qui surgissent de ses extrémités.

Les côtes ne sont que des appendices vertébraux ou sternaux parvenus à leur complète évolution, et ces arcs osseux sont plus favorables à la solidité des parties qu'à leur mobilité; mais, en règle générale, leur développement est subordonné aux différents modes d'exercice de la locomotion.

Nous désirons que les faits énoncés dans ce mémoire, joints aux analogies que nous avons rappelées, puissent donner à notre opinion, sur la véritable nature des deux noyaux osseux sus-costaux que nous avons décrits et faits représenter, tous les caractères de la vérité et de l'évidence, et qu'on reconnaisse comme démontré que la poitrine possède, à son extrémité céphalique, des éléments osseux, situés sur deux points différents : 1° sur l'apophyse transverse de la septième vertèbre cervicale ; 2° sur l'extrémité supérieure du sternum. Ces noyaux osseux sont les uns comme les autres des rudiments de côtes, et peuvent par leur développement servir à l'agrandissement du thorax vers sa partie supérieure, comme on voit d'autres rudiments de côtes vers la base ou extrémité abdominale du thorax.

Dans une seconde communication, nous traiterons de plusieurs pièces osseuses du squelette des mammifères, encore peu connues, si nous devons en juger d'après les ouvrages que la science possède.

(1) Traité élémentaire d'anatomie comparée, suivi de recherches d'anatomie philosophique ou transcendantale sur les parties primaires du système nerveux et du squelette intérieur et extérieur, t. iii, Paris, 1835.
EXPPLICATION DES FIGURES.

Fig. 1. Sternum d'adulte, représenté d'après une réduction d'un tiers de grandeur naturelle.

a. a. Os sus-sternaux on épi-sternaux en position.

b. b. Facettes articulaires destinées à recevoir les clavicules.

c. c. Cartilage de la première côte.

d. Première pièce du sternum.

e. Ligne cartilagineuse indiquant la jonction de la première pièce du sternum avec la seconde.

f. Seconde pièce du sternum.

g. Troisième pièce du sternum.

h. La plus grande ouverture dont est percée cette pièce.

i. Ligne cartilagineuse indiquant l'union de la deuxième pièce du sternum avec la troisième.

Fig. 1'. a'. Os sus-sternaux de grandeur naturelle, ainsi que toute la portion supérieure de la première pièce du sternum, qui est représentée par cette figure.

b', b'. Facette articulaire pour recevoir la clavicule.

c', c'. Cartilages de la première côte.

d'. Partie supérieure de la première pièce du sternum.

Fig. 2. Sternum d'un jeune sujet, représenté ici dans la proportion de deux tiers de sa grandeur naturelle.

a. a. Cartilages rudimentaires des os sus sternaux.

b. b. Facettes articulaires destinées à recevoir la clavicule.

c. c. Facettes articulaires du cartilage de la première côte.

d. Première pièce du sternum.

e. Union de la première pièce du sternum à la seconde.

f. f. Seconde pièce du sternum, portant sur la ligne médiane les traces g. des deux noyaux composant primitivement cette pièce.

h. h. Troisième pièce du sternum, composée comme la précédente, mais plus distinctement, de deux parties qui se réunissent sur la ligne médiane.

i. Ligne cartilagineuse indiquant la soudure des deux pièces.

l. l. La quatrième portion du même os, également composée de deux pièces, se réunissant sur la ligne médiane m, et laissant entre elles un vide ou ouverture k.

u. Ligne cartilagineuse, par laquelle les deux pièces de la quatrième portion s'unissent à la cinquième ou os xyphoïde.

o. Cinquième portion ou os xyphoïde.

Fig. 3. Sternum d'un sujet adulte, deux tiers de nature.

a. a. Os sus-sternaux unis au sternum par quelques faisceaux ligamenteux circulaires qui laissaient à ces pièces assez de liberté pour glisser et exécuter des mouvements sur les petites facettes articulaires.

b. b. Facettes articulaires qui recevaient la clavicule.

c. c. Facettes articulaires du cartilage de la première côte.

d. Première portion du sternum.

e. Ligne indiquant l'union entre la première et la seconde portion du sternum.

f. Secousse portion du sternum.

g. Ligne indiquant l'appendice xyphoïde qui avait été brisé et détaché du sternum.
G. BRESCHET. — *Squelette des Vertébrés.*

Fig. 3. Partie supérieure du même sternalum que celui que représente la figure 3 ; mais ici les os sus-sternaux, a', a', sont détachés et écartés des facettes du sternum c', c'. Ces facettes étaient enroûtées d'un cartilage diarthrodial et recouvertes d'une membrane synoviale. Les os sus-sternaux étaient donc mobiles sur le sternum.

b', b', Facettes articulaires pour recevoir la clavicule.

d. Première portion du sternum.

Fig. 4. Première portion d'un sternum d'adulte et de grandeur naturelle, vue par sa face postérieure ou pleurale.

a, a. Os sus-sternaux.
b, b. Facette articulaire pour recevoir la clavicule.
c, c. Cartilage de la première côte.
d. Portion postérieure du sternum.
e. Ligne par laquelle la première portion du sternum s'unissait à la seconde.

Fig. 4'. Première portion supérieure du sternum, vue par son extrémité supérieure ou cervicale (fourchette).
a', a'. Os sus-sternaux.
d', d'. Ligne circulaire indiquant l'articulation des os sus-sternaux avec la partie supérieure du sternum.

b', b'. Facettes articulaires destinées à recevoir l'extrémité interne de la clavicule.
c', c'. Cartilages de la première côte.

Fig. 5. Squelette du Triton ou Salamandre aquatique crêtée (Salamandra cristata Latr.), vu par sa face inférieure.
a, a. Os pubis.
b, b. Cartilage ypsiloïde.
c, c, c, c, c. Apophyses transverses des vertèbres représentant des rudiments de côtes.

Fig. 6. Squelette de la même salamandre, vu par sa face supérieure.
a, a. Os pubis.
b, b. Os ilion.
c, c. Os ischion.
d, d, d, d, d. Apophyses transverses des côtes, formant des côtes rudimentaires.

Fig. 7. Squelette de la même Salamandre à crête, vu par une de ses faces latérales.
a. Os pubis.
b. Os ilion.
c, c. Cartilage ypsiloïde.
d, d, d, d. Apophyses transverses ou rudiments de côtes.

Fig. 8. Membre thoracique ou antérieur, grossi du double de la grandeur naturelle.

Fig. 9. Membre postérieur ou pelvien, grossi dans la même proportion que le membre précédent. On voit neuf os au tarse, bien que la plupart des anatomistes n'en aient accusé que huit.

Fig. 10. Bassin, avec les dernières vertèbres lombaires et les premières caudales, grossies du double de la grandeur naturelle, et vu par la face inférieure.
a, a. Os pubis.
b, b. Os ilion.
c, c. Os ischion.
d, d. Premières vertèbres caudales.
Les animaux qui constituent le groupe des Mammifères insectivores sont dans le cas des Chéiroptères ou chauve-souris, c'est-à-dire qu'offrant un assez bon nombre de singularités d'organisation et de mœurs, ils n'ont pu échapper, et souvent malgré leur petite taille, aux observations des naturalistes, depuis les temps les plus reculés jusqu'à nos jours, et d'autant plus que les trois espèces types habitant toutes les parties de l'Europe, ont dû se présenter d'abord à l'examen des observateurs.

On trouve, en effet, les taupes, les musaraignes et les hérissons déjà signalés dans quelques-unes de leurs particularités par Aristote, Plin et leurs abréviateurs ou commentateurs. Et cette année même les musaraignes seules viennent de donner lieu à un grand travail de la part de M. Nathusius.

D'après celui auquel M. de Blainville vient de se livrer, et dont cet article est extrait, on peut, dans l'état actuel de nos connaissances au sujet des Mammifères insectivores, donner les résultats suivants :

A, comme résultats historiques :

Les anciens naturalistes connaissant à peine les trois types européens de cet
ordre de Mammifères, ne se sont nullement occupés de leurs rapports naturels, pas plus que de leur place dans la série.

Gessner est le premier qui les ait passablement définis, au moins les deux genres *Talpa* et *Sorex*.

Ray est le premier qui, sentant leurs rapports naturels, les ait rapprochés tous les trois convenablement, dans un système mammalogique.

Daubenton, qui a également admis ce rapprochement, a commencé à distinguer les espèces, du moins dans le genre musaraigne ; mais seulement par la considération de la taille et de la couleur, comme l'ont fait tous les zoologistes qui se sont occupés de ce sujet avant Wagler.

Storr et Pallas ont parfaitement senti les rapports naturels des Insectivores entre eux et avec les autres Mammifères, ce que le premier a montré dans son prodrome d'une méthode naturelle des Mammifères.

Link a formé le premier un ordre distinct avec ces trois genres d'animaux.

Lacépède surtout, et à son imitation G. Cuvier et Illiger, prenant en considération rigoureuse le système dentaire, les ont partagés en plusieurs sections génériques.

Raffles, Smith et Brandt y ajoutent les nouvelles formes, beaucoup plus distinctes, fournies par l'Afrique, l'Inde et l'Amérique.

Wagler, appliquant aux musaraignes proprement dites le même principe de divisions génériques qui avait été employé par Lacépède, pour les trois genres Linnéens, a introduit les bases de la distinction et de la distribution des espèces, ce qui a été adopté par MM. Duvernoy et Nathusius.

**B, comme résultats de classification :**

1° Les Mammifères insectivores doivent constituer un ordre distinct ;

2° Sa place est intermédiaire à celui des Chéiroptères ou chauve-souris, et à celui des Édentés.

3° La disposition, la distribution des espèces doit être des plus anomalies pour fouir et vivre dans la terre, qui doivent commencer, aux plus normales et aux moins souterraines, c'est-à-dire des *Talpa*, en passant aux *Sorex* et en finissant par les *Erinaceus*, dont le système dentaire devient normal, comme chez les Carnassiers.

4° La distinction des espèces repose essentiellement sur le système dentaire qui, pour chacune d'elles, présente une particularité tranchée dans le nombre, la forme ou les proportions.

Le tableau suivant rendra facile à comprendre la classification des Mammifères insectivores, telle que nous nous proposons de l'établir.

<table>
<thead>
<tr>
<th>A. Chrysocodoris</th>
<th>Talpa aurea, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. <em>Talpa</em>........</td>
<td><em>Talpa vulgaris</em>, T. ceca, T. Moogura.</td>
</tr>
<tr>
<td>G. <em>Talpa</em>........</td>
<td>(Talpa virginiana ou Talpa-sorex pensylvanicae (Lessson), etc.</td>
</tr>
<tr>
<td>C. Scalops........</td>
<td>Talpa cristata,</td>
</tr>
</tbody>
</table>
Sorex moschatus.
Sorex pyrenaicus (G. Galenys Wagl., Mygalina Isid. Geoff.)

Sorex paradoxus (G. Solenodon Brandt).
(a) Espèces qui ont 3/4 dents intermédiaires,
  2. Sorex pygmæus.
  4. Sorex brevicaudatus on *S. tupaoides* Grapper.
(b) Espèces qui ont 3/4 dents intermédiaires.
  * Les dents colorées.
  5. Sorex fodiens (Pallas, Nathusius), ou *S. Daubentoni* Erxleben; *S. carinatus* et constictus Hartmaan; *S. remifer* E. Geoff.; *S. fluviatilis* Rechstein; *S. amphibius*, *natan*, *stagnalis*, Brchm.; *S. musculus* et siderus Wagler; *S. nigriros* Melchior; *S. hermanii* Duv. ou *S. remifer*, variété à dents rouges, Isid. Geoff.
  ** Les dents non colorées.
  7. Sorex etruscus (Savi).
(c) Espèces qui n'ont que 3/4 dents intermédiaires.
  10. Sorex varius (Smith), probablement le *S. herpestes* Duvernoy.
  11. Sorex araneus (Schreber), ou *S. leucodon* Hermaan; *S. pachyurus* Kust.; *S. inodorus* Savi; *S. simbraïtus*, *moschatus*, *major*, *rufus*, *poliogaster*, Wagler.
  13. ? Sorex capenseoides, Smith; *S. cyaneus* Duvernoy. Macr. typus (Smith); 2 Macr. Rozeti (Duvernoy);

C. Macroscelis...

D. Glisorex...

E. Echino-Sorex.
  1. Viverra Gymnura (Raﬄes).

(1) On conçoit que les *Macroscelides* et les *Glisorex* puissent être considérés, à cause des différences que présentent quelques-uns de leurs caractères, et aussi leurs habitudes, comme formant chacun un genre distinct.

(2) On ne connaît encore que de nom l’espèce de Madagascar, qui sert de type au genre *Echinops* de M. Martin.

On conçoit que le *Gymnure* ait pu être aussi rapporté par quelques personnes aux *Erinaceus*; il en même temps des rapports avec eux et les *Sorex*, mais nous ne l’avons pas en nature.
C, comme résultats de répartition géographique :

1. Les trois genres principaux sont essentiellement de l'Ancien-Monde.
2. Tous les trois sont européens.
3. Un seul est de toutes les parties de la terre, la Sud-Amérique et la Nouvelle-Hollande exceptées : c'est le genre Sorex.
5. La Sud-Afrique seule offre les taupes dorées.

Les quatre sections de ce genre se trouvent réunies en Europe seulement.

L'Asie seule possède les musaraignes-écureuils et les musaraignes-hérissons.

L'Afrique seule a offert les musaraignes gerboïdes ou macroscélides.
8. Les hérissons sont exclusivement de l'ancien continent.
9. Les tenrecs sont exclusivement au contraire de Madagascar.

D, comme résultat de l'antiquité à la surface du globe :

1. Les trois types européens sont de la plus haute antiquité historique.
2. Tous les trois genres se trouvent à l'état fossilé :
A, dans les brèches osseuses du littoral de la Méditerranée.
B, Dans le sol des cavernes d'Allemagne, d'Angleterre, de Belgique et de France.
C, Dans un terrain tertiaire moyen des montagnes sous-pyrénéennes.
D, Dans un terrain d'eau douce d'Auvergne.

Les cinq ou six espèces qui ont été reconnues jusqu'ici comme fossiles, une taupe, trois espèces de musaraignes et un hérisson, ne diffèrent pas spécifiquement de celles qui existent actuellement à l'état vivant.

Elles se trouvent pêle-mêle avec des restes d'animaux qui ne vivent plus dans nos contrées, et d'autres qui y vivent encore.

D'où il faut conclure, comme nous l'avons fait à l'égard des singes et des chauves-souris, que, depuis deux ou trois mille ans, d'après les renseignements
I.

historiques, et depuis un temps inapprécié et probablement inappréciable, d'après les renseignements géologiques, c'est-à-dire depuis l'époque de la formation du diluvium et des terrains tertiaires moyens, les circonstances et milieux propres à entretenir la vie animale à la surface de notre globe, n'ont pas changé.

Observation. Dans ce mémoire sur les Mammifères insectivores il n'a dû être question que de ceux qui appartiennent à la sous-classe des Monodelphes. Je ne parlerai donc du fœtus de Stonesfield, que l'on a regardé assez généralement jusqu'ici comme un insectivore Didelphé, sans raisons bien concluantes peut-être, que lorsque je serai arrivé à cette partie de mon travail; je me bornerai à copier la note que je remis peu de temps après son retour d'Angleterre à M. Brochant de Villiers, qui m'avait consulté sur une mâchoire d'un animal de Stonesfield, rapportée par lui de cette localité: «demi-mâchoire inférieure gau-
che, vue à la face interne, provenant d'un petit animal de la famille des Sau-
riens. On pourrait aussi concevoir que cet os aurait appartenue à un poisson « de la famille des Labres, et que ce serait un os incisif; mais la première dé-
termination est infiniment plus probable.

« Ce qui paraît certain, c'est que cette pièce ne peut provenir d'un Mammifère « didelphé, ou non, comme on aurait pu le croire un moment à la première inspection. » (1)

Notice sur les Rongeurs épineux désignés par les auteurs sous les noms d'Échimys, Loncheres, Heteromys et Nelomys, par M. Isidore Geoffroy Saint-Hilaire. (Présentée à l'Académie des Sciences le 25 juin 1838.)

(Extrait.)

Bien que les Échimys, si remarquables par la nature éminemment caractéristique de leurs téguemens, aient dû fixer dès long-temps l'attention des auteurs,

(1) A la suite de cette communication, M. Élie de Beaumont fait observer qu'une petite mâchoire rapportée de Stonesfield par M. Brochant de Villiers, M. Dufrenoy et par lui-même, appartient en effet à un Saurien, mais que cela n'empêche pas que des ossements de Mammifères n'aient été trouvés à Stonesfield. Cuvier et M. Agassiz ont reconnu comme M. de Blainville que la mâchoire rapportée à Paris appartient à un Saurien; mais lorsque M. Élie de Beaumont la montra à Cuvier, cet illustre animoniste, en lui faisant voir pourquoi elle ne pouvait être rapportée à un Mammifère, lui montra aussit que l'on pourrait des mâchoires du petit Mammifère trouvé dans le même gisement (Didelphis Bocklandi), dont l'existence dans cette partie de la série où l'on se trouve est de douteux.,
et que le nombre très restreint des espèces connues dans cette groupe semble devoir rendre leur détermination exempte de graves difficultés, il est peu de genres dont la révision soit devenue plus nécessaire dans l'état présent de la science. M. Isidore Geoffroy a profité pour l'entreprendre de l'avantage de pouvoir comparer aux types mêmes des espèces rapportées du Musée de Lisbonne par son père, un assez grand nombre de matériaux nouveaux; les uns acquis depuis quelques années par le Musée de Paris, d'autres récemment parvenus en France par les soins de M. Parageau; d'autres, enfin, confiés à l'examen de M. Isidore Geoffroy, par la direction du Musée de Genève. C'est l'envoi de ces derniers et la prière obligante qu'on lui a faite de se charger de leur détermination et de leur publication, qui a engagé l'auteur dans le long et aride travail dont il consigne ici les principaux résultats.

Dans une première partie de son Mémoire, M. Isidore Geoffroy donne un exposé historique des travaux faits sur les rongeurs épineux dont il s'occupe, depuis Allamand et Buffon jusqu'en 1838. C'est M. Geoffroy Saint-Hilaire père, comme le reconnaissent tous les auteurs, qui est le fondateur du genre Échimys. La formation de ce nom, la séparation en un groupe distinct d'un certain nombre de rongeurs épineux d'Amérique, jusque alors ballottés entre les genres Rat, Loir et Porc-Épic, la distinction de la plupart des espèces, lui sont en effet dues; mais son travail est resté inédit. Ses déterminations et ses noms ne sont entrés dans la science que par les publications de MM. George et Frédéric Cuvier, et de M. Desmarest. La plupart des auteurs ont ignoré cette circonstance, et de là le vague et souvent l'incertitude des indications synonymiques qu'ils ont données à l'égard soit du genre Échimys lui-même, soit de ses diverses espèces.

L'auteur passe ensuite en revue toutes les espèces vraies ou nominales ajoutées, principalement par M. Lichtenstein, aux sept d'abord admises par M. Geoffroy père, et qui toutes doivent être conservées. Le nombre total des espèces de ce groupe s'éleverait présentement à quinze, selon les auteurs, non comprises deux nouvelles espèces qui seront plus bas mentionnées. Mais sur ce nombre, il s'en trouve une qui est tout-à-fait à éliminer comme formant double emploi, deux autres qui restent douteuses, et deux qui sont bien réellement distinctes, mais n'ont été rapportées que par erreur au groupe des Échimys.

Dans la troisième partie de son travail, qui est de beaucoup la plus étendue, l'auteur s'occupe de la classification des rongeurs préalablement déterminées par lui sous le point de vue spécifique. Parvenu à rassembler de divers côtés jusqu'aux treize crânes appartenant à dix espèces différentes, M. Isidore Geoffroy réfute d'abord l'assertion de M. Lichtenstein qui affirme que les Rats épineux ou Échimys des auteurs (une seule espèce exceptée, le Loncheres paleacea d'Ili- liger) n'ont que douze molaires semblables à celles des rats: assertion qui le conduit à supprimer le genre Échimys, et à en réunir toutes les espèces aux rats proprement dits. M. Isidore Geoffroy montre que le savant zoologiste de
I. GEOFFROY SAINT-HILAIRE. — Rongeurs épineux.

Berlin a été induit en erreur par l'examen de la dentition du *Mus cahirinus* de M. Geoffroy père, qui, en effet, n'a que douze molaires, mais qui jamais n'a été rapporté par les auteurs français au groupe des *Echimys*; groupe dont toutes les espèces ont bien quatre molaires de chaque côté et à chaque mâchoire.

Bien éloigné des vues de M. Lichtenstein, M. Jourdan, professeur à la Faculté des Sciences de Lyon, a, au contraire, proposé dans un Mémoire présenté à l'Académie en octobre 1837, non-seulement de continuer à séparer les *Echimys* des Rats, mais même d'établir, à côté des *Echimys*, un second genre qu'il a appelé *Nélomys*, et que caractériseraient les proportions très différentes de ses tarses, la forme assez distincte de ses oreilles, enfin, l'état de la queue, qui serait velue dans les *Nélomys*, nue et écailleuse dans les vrais *Echimys*. Dans le rapport qu'il a fait récemment, en son nom et au nom de M. Duméril, sur le mémoire de M. Jourdan, M. Frédéric Cuvier a montré que le genre *Nélomys*, bien que devant être vraisemblablement confirmé par les observations ultérieures, ne pouvait être considéré dès-lors comme établi sur les bases suffisamment solides, l'auteur n'ayant pu comparer d'une manière générale le système dentaire des *Nélomys* à celui des vrais *Echimys*, ni faire entre les deux genres le partage de leurs espèces. Grâce à la position plus favorable dans laquelle il s'est trouvé placé, grâce aussi à l'obligence qu'on a mise de toute part à lui communiquer de nouveaux matériaux, M. Isidore Geoffroy a pu résoudre enfin ces doutes, et reconnaître qu'il est en effet, parmi les rongeurs épineux ordinairement compris parmi les *Echimys*, deux systèmes dentaires, l'un plus compliqué (non quant au nombre qui est toujours de quatre, mais quant à la forme des molaires) appartenant aux *Nélomys* de M. Jourdan, l'autre plus simple aux vrais *Echimys*; que les caractères que M. Jourdan a tirés des proportions des pieds, sont exacts, et assez prononcés même pour que l'on puisse dire que les *Echimys* sont, sous ce rapport, aux *Nélomys* ce que les gerbilles sont aux rats; que la forme des oreilles, au contraire, et surtout l'état velu ou écailleux de la queue, ne peuvent fournir aucun caractère générique; enfin, que le partage des espèces entre les deux genres, doit être fait ainsi qu'il suit:

A. Espèces du genre *ECHIMYS*.

1° *Echimys setosus*, Geoffroy Saint-Hilaire.

2° *Echimys cayennensis* Geoffr. S.-H.


4° *Echimys hispidus*, Geoffr. S.-H.

5° A ces quatre espèces doit être jointe une cinquième, entièrement nouvelle, qui existe dans les Musées de Paris et de Genève, et qui vient de la
petite île Deos, sur la côte du Brésil, près de Bahia. M. Isidore Geoffroy la nomme et la caractérise ainsi:

Echimys albispinus (Echimys à épines blanches). — Queue écailleuse avec quelques poils courts, bruns à la face supérieure, blanchâtres à l'inférieure. — Dessus du corps d'un brun rougeâtre, un peu plus clair sur les flancs; dessous du corps et la plus grande partie des pattes, d'un blanc pur. — Des piquans aplatis, lancéolés, très forts, très nombreux, peu mélangés de poils, et répandus jusque sur la croupe et les cuisses; ceux des parties latérales à extrémités blanches. — Taille o m, 185; longueur de la queue, o m, 150.

6° Enfin, l'auteur indique, mais avec beaucoup de doute, comme sixième espèce l'Echimys myosuros (Lonchères myosuros, mus leptosoma et mus cinnamomeus Lichtenstein; Lonchères longicaudatus, Rengger), à l'égard de laquelle aucun caractère, nettement distinctif, n'est exprimé par les descriptions et les figures des deux zoologistes allemands qui l'ont fait connaître.

B. Espèces du genre NELOMYS.

1° Nelomys cristatus (Lérot à queue dorée, Buffon, Allamand; Echimys cristatus, Geoffroy Saint-Hilaire.

2° Nelomys paleaceus (Lonchères paleacea, Illiger, Lichtenstein).

3° Nelomys Blainvillii, Jourdan.

4° Nelomys didelphoides (Echimys didelphoides, Geoff. S.-H.)

5° Nelomys armatus; espèce que M. Lichtenstein a fait connaître, et qu'il a appelée Mus hispidus, parce qu'il avait cru reconnaître en elle l'Echimys hispidus de M. Geoffroy père.

6° A ces cinq espèces, dont la dernière n'est pas suffisamment authentique, M. Isidore Geoffroy en ajoute une nouvelle, ainsi nommée et caractérisée :

Nelomys semivillosus (Nélomys demi velu). — Queue écailleuse (sauf la base), mais avec des poils nombreux de couleur fauve. — Corps d'un brun roussâtre tiqueté de jaune, avec le dessous plus clair. — Des piquans médiocrement forts sur le corps; d'autres plus faibles, mais encore très raides et très aplatis sur la tête. — Taille, o m, 195; longueur de la queue, o m, 195.

Trois individus de cette dernière espèce viennent d'être envoyés de Carthagène (Nouvelle-Grenade), par M. Pavageau, ancien consul en cette ville. J'en dois la communication à MM. de Blainville et Roulin.

Chacun des deux genres Echimys et Nélomys se trouve donc composé de quatre espèces anciennement connues et bien distinctes, d'une autre nouvelle, bien distincte aussi, et enfin d'une sixième déjà figurant depuis plusieurs années dans les catalogues, mais dont l'autenticité laisse plus ou moins à désirer.
Quatre autres rongeurs ont été rapportés par divers auteurs au groupe des Echimys, savoir :

A. Le Mus anomalus de Thomsom, érigé, mais avec doute, en genre sous le nom d' *Heteromys*, par [M. Desmarest. Ce rongeur offrirait en effet des caractères éminemment distinctifs, si l'on pouvait accorder toute confiance à la description de Thomson. Cette description est malheureusement très vague dans presque toutes ses parties, et ne fixe pas même avec exactitude le nombre des molaires.

B. Le *Lemmus niloticus* de M. Geoffroy père. M. Isidore Geoffroy s'est assuré que le système dentaire de cette espèce n'est ni celui des Campagnols, ni surtout celui des Echimys, mais bien celui des Rats.

C. Le *Mus cahillinus* de M. Geoffroy père, que quelques auteurs appellent *Echimys d'Egypte*. Ce rongeur très remarquable est en effet assez voisin des Echimys par ses téguments, mais en même temps aussi des Rats par ses dents, et il doit former, d'après M. Isidore Geoffroy, un genre à part que l'on pourra nommer Acemyx.

Enfin l' *Echimys dactylinus*, Geoff.-S.-H. Ce rongeur, quoiqu'il ne soit pas même épineux, a été placé jusqu'à présent parmi les Echimys : mais les nombreux caractères distinctifs que présentent ses dents, ses pattes, sa queue ne permettent de le laisser ni parmi les Echimys ni parmi les Néiomys, dont il diffère assurément beaucoup plus que ces deux genres ne diffèrent entre eux. M. Isidore Geoffroy propose, en conséquence, d'établir pour lui, sous le nom de *Dactylomys*, un genre nouveau dont les caractères, exposés avec détail dans le Mémoire peuvent être ainsi résumés :

Corps couvert, non de piquans, mais de poils, et terminé par une longue queue : celle-ci nue et écailleuse, sauf sa base qui est velue. — Pattes courtes : les antérieures tétraïdactyles, avec les deux doigts intermédiaires extrêmement longs, et arrachés, aussi bien que les latéraux, d'ongles courts et convexes. Les postérieures pentadactyles ; les trois doigts intermédiaires à ongles médiocrement comprimés et allongés ; les deux externes qui sont courts, à ongles courts et convexes. — A chaque mâchoire, quatre molaires, divisées transversalement par un sillon en deux portions subdivisées par une échancrure : les deux rangées des molaires supérieures assez rapprochées en arrière, presque contiguës en avant.

L'unique espèce connue dans ce genre est l' *Echimys dactylinus*, Geoff.-S.-H. *Dactylomys typus* de M. Isidore Geoffroy, qui résume ainsi ses caractères spécifiques. — Corps couvert de poils assez doux, variés de roux mordoré, de noir et de fauve ; une petite huppe de poils un peu raide, d'un blanc rousseâtre sur la tête. — Taille d'environ 0,350 ; queue plus longue que le corps et la tête.

Cette espèce, qui habite l'Amérique méridionale, probablement le Brésil, est jusqu'à présent restée d'une extrême rareté. L'individu que M. Geoffroy Saint-Hilaire père a rapporté en 1808 de son voyage en Portugal, et qui est conservé
DE FIBRÆ MUSCULARIS FORMÆ ET STRUCTURA, AUCTOR H. R. FICINUS.

Dans cette dissertation inaugurale, soutenue à Lepsick, en 1836, M. Ficus passe en revue les divers auteurs qui ont écrit sur la structure élémentaire des muscles, et expose ensuite les observations qui lui sont propres; enfin il arrive aux conclusions suivantes.

I. Musculis omnibus peculiare esse fibras subtilissimas (0,0001 — 1,000066. poll. par. crassas) cylindricas, pro tenuitate satis firmas, elasticas, pellucidas, recenti statu apud mammalia et volucres levi ruhore imbutas, in maiores vel minores, laxiores vel si minores fasciculas parallelas fibras continentis distributus, quæ fibræ primitivæ appellantur.

II. Pro fibräm primitivarum constructione musculos in duas maxime classes dividit, quarum altera articulatos, altera non articulatos continet. In musculis articulatis fibras primitivas aliquot vaginula firma, ut videtur cellulosæ tendinea, circumdatas fasciculam primitivum constituere; in musculis autem non articulatis hanc vaginam desiderari et laxæ cohærentium fibrarum primitivarum aggregatiónem fasciculum minus circumscriptum constituæ.

III. Pro fasciculorum primitivorum constructione musculos dividit in parallelo-fibrosos, et reticulato-fibrosos vel, ut Musio placuit, in musculos carne proprie musculosa et reticulata instructos. In illis invenimus fasciculos primitivos per totum eorum decursum separatos nec ulla fibra carnea cum vicinis cohærentes; in his autem observamus fasciculos primitivos fibras secum communicantes, ita ut retis formam referant.

IV. In vivo animali et ensis musculo nondum contracto fibras recta linea extensae conspici.

V. Contractione musculum rugis transversalibus notari, quæ in moribundo musculo remaneant.

VI. Contractionem oscillatione undulata progressiva musculum convellente effici.

VII. Musculum e corpore vivo demum et sponte aut alieno sternulo contractum nunquam sponte sua relaxari, sed tamen oscillationis vestigia retinere undatos flexus lacertorum maiores, fasciculorum minores et fibrarum minimos. Illos oculo nudo in carne crispa conspicimus, hos armato tantummodo.

VIII. Flexibus fibrarum primitivarum propriis et concinnis in musculis arti-
Entozoaires observés en Irlande.

culatis rugas fasciculorum primitivorum transversales formari. Haque rugas non vivi sed mortui musculi signum esse, flexus autem undulatos fibrarum primitivorum saxe sese felisse observatores, ita ut has fibras globulorum constare in dicassent.

Notices of Irish Entozoa. — Notices sur les Entozoaires, observés en Irlande, par M. J. L. Drummond. (Extrait.)

Dans la première partie de ce mémoire, l'auteur traite de l'Echinorhynchus acus, qu'il a trouvé en grand nombre dans la Morue et le Charbonnier (Merlangus carbonarius). Il décrit avec soin la conformation extérieure de ce ver, ainsi que les changements produits dans sa forme par son immersion dans l'eau; il a observé également les œufs fusiformes, qui se rencontrent dans l'intérieur du corps des individus femelles, et il a constaté que c'est par le point central de l'extrémité caudale de l'animal que la ponte s'effectue, fait qui a de l'intérêt; car les naturalistes n'étaient pas d'accord sur le mode de terminaison des ovaires, et quelques auteurs pensaient que les œufs étaient expulsés par la trompe.

Dans la seconde partie de son travail, M. Drummond rapporte ses observations sur le Tetrarhynchus grossus Rudol., dont l'habitat était inconnu, et qu'il a trouvé dans le rectum d'un saumon; sur le Tetrarhynchus solidus, espèce nouvelle trouvée dans le mésentère d'un autre saumon, et sur le Bothriocephalus punctatus Rud. L'auteur se propose de publier la suite de ce travail dans les cahiers suivants du journal de M. Charlesworth, où se trouvent les deux articles dont nous venons de rendre compte.

(Magazine of natural history, n° 22 et 23, 1338.)
Mémoire sur la distribution géographique des Crustacés ;

Par M. H. Milne Edwards.

(Lu à l'Académie des Sciences le 3 septembre 1838.)

§ 1. La distribution géographique des animaux et des plantes est un point d'histoire naturelle qui intéresse également le physiologiste et le géologue. En étudiant la manière dont les êtres vivants sont répartis à la surface du globe, on portera certainement une grande lumière sur l'influence que les agents physiques exercent sur l'organisation; on fournira, peut-être, d'utiles matériaux pour la solution de la question, tant débattue, de l'invariabilité ou de la transmutation des espèces, et on obtiendra des termes de comparaison pour juger de l'état ancien de la terre d'après les fossiles qui s'y trouvent enfouis. Un sujet qui touche la science par tant de points à-la-fois, ne pouvait manquer d'attraits pour les esprits philosophiques, et a dû nécessairement fixer l'attention d'un grand nombre de naturalistes; et en effet, Linné, Buffon, de Humboldt, de Candolle et une longue série d'autres savans, dont les noms se répètent trop souvent ici pour que j'ai besoin de les citer, y ont tour-à-tour consacré leurs veilles; et cette étude quoique d'une origine toute récente, a fait déjà, en ce qui concerne le règne végétal d'imenses progrès.
La géographie zoologique a été moins activement cultivée, et cependant elle est déjà riche d'aperçus pleins d'intérêt. Buffon, comme chacun le sait, fut le premier qui ouvrit aux zoologistes cette voie nouvelle. Il a deviné, ou plutôt, là où des observateurs moins fins et moins hardis, n'auraient vu que des éléments trop incomplets pour servir de base à des généralisations quelconques, il a su saisir, avec un tact admirable, des règles que les progrès de la science ont presque toujours confirmées dans tout ce qu'elles ont de grand et d'essentiel. Mais les travaux de Buffon et des naturalistes qui l'ont suivi, ne portent guère que sur les animaux terrestres ; on pourrait même dire sur les mammifères et les oiseaux seulement, tant les essais de Latreille et de quelques autres savants sur la distribution géographique des insectes sont restés incomplets ; un vaste champ de recherches est demeuré presque entièrement fermé, car, à peine a-t-on hasardé quelques vues isolées sur la manière dont se trouvent répartis au milieu des eaux, les myriades d'animaux dont la mer fourmille (1). Dans une question de cette nature, on ne peut cependant négliger une branche sans que les progrès des autres s'en ressentent, et pour que l'étude de la distribution géographique des êtres vivants porte tout le fruit qu'on est en droit d'en attendre, il faut qu'elle les embrasse tous.

Plusieurs circonstances ont contribué à retarder la marche de cette portion de la zoologie géographique. Pendant longtemps les animaux inférieurs n'excitaient que peu d'intérêt ; nos collections en étaient pauvres, et ceux que l'on y possédait étaient souvent étudiés d'une manière si superficielle, que les déterminations spécifiques étaient loin d'offrir la précision indispensable à des recherches de ce genre ; si pour avoir un aperçu de la distribution géographique des Poissons, des Crustacés et des Zoophytes, le naturaliste parcourait nos musées ou

(1) Parmi les écrits les plus intéressants sur ce sujet, je citerai un mémoire de M. Dorbigny relatif à la distribution géographique des Pèpèpodes, et une note de M. Deshayes sur les mollusques des mers actuelles comparés aux fossiles des terrains tertiaires. Quant au travail de Péron sur la distribution géographique des animaux marins, il ne contient guère que des généralités dont l'inexactitude me semble être souvent évidente.
des Crustacés.

jetait les yeux sur les catalogues zoologiques, il rencontrait à chaque instant les mêmes noms attachés à des animaux provenant des localités les plus éloignées et les plus dissemblables, et, s'il cherchait à appliquer à ces êtres quelques-unes des règles établies par les observations faites sur les animaux supérieurs, il était arrêté aussitôt par des exceptions non moins nombreuses que les cas en concordance avec ses prévisions fondées sur l'analogie. On en concluait que pour les classes inférieures du règne animal, la distribution géographique n'offrait rien de constant ni de régulier, et cette opinion devait tendre à éloigner les observateurs d'une étude qui nécessitait de longues recherches, et qui semblait promettre si peu de résultats.

Mais, depuis quelques années, les voyageurs ont cessé de se laisser attirer uniquement par les objets d'un gros volume, ou d'une brillante couleur, et les musées zoologiques ont été enrichis par de nombreuses collections, dans la formation desquelles on a eu le bon esprit de ne négliger aucune des classes d'animaux. Ces matériaux précieux sont devenus aussi le sujet d'investigations plus sévères, et les distinctions spécifiques ont acquis plus de précision. Il en est résulté que l'étude de la distribution de la plupart des animaux marins rencontrerait aujourd'hui moins d'obstacles, et qu'en la poursuivant avec la patience nécessaire à ce genre de recherches, où la comparaison attentive des objets doit être à chaque instant renouvelée, soit pour confirmer, soit pour rectifier les déterminations reçues, on pourrait espérer en déduire des conséquences dignes d'intérêt.

Occupé depuis plusieurs années d'un travail général sur les Crustacés, j'ai eu l'occasion d'en examiner un nombre très considérable, et cet examen m'a naturellement conduit à comparer ces animaux entre eux, non-seulement sous le rapport de leur structure anatomique et de leurs caractères zoologiques, mais aussi sous celui de leur distribution à la surface du globe, sujet sur lequel la science ne possède presque rien (1). Pour ces recherches j'ai mis à con-

(1) Le mémoire sur la distribution géographique des Crustacés publié par MM. Quoy et
Distribution les écrits des autres naturalistes, et j'ai passé en revue plusieurs milliers de Crustacés, provenant de presque toutes les parties du monde, et conservés dans les principales collections de la France, de l'Angleterre, de l'Italie; néanmoins les résultats généraux que j'ai pu en déduire sont certainement très incomplets, et seront peut-être modifiés par les observations ultérieures; je ne les présente donc qu'avec réserve, mais ils me paraissent trop nets pour ne pas indiquer les tendances réelles de la nature, et du reste, quelle que soit leur valeur, ils seront je l'espère, utiles à la science en appelant l'attention des zoologistes sur des questions trop négligées jusqu'ici.

§ 2. En examinant avec attention la manière dont les Crustacés sont répartis à la surface du globe, on voit que, suivant toute probabilité, ces animaux n'ont pas pris leur origine dans un même point et ne sont pas émanés d'un foyer de création unique pour se répandre peu-à-peu dans les mers lointaines; on voit que l'aire occupé par chaque espèce à des limites plus ou moins étroites, et on ne tarde pas à se convaincre qu'il existe pour ces animaux marins, comme pour les plantes et les animaux terrestres, un certain nombre de régions distinctes caractérisées par des populations particulières. La faune de chacune de ces régions se compose en partie d'espèces qui ne se rencontrent pas ailleurs, en partie d'espèces qui leur sont communes avec d'autres parages, et, en général, ces dernières sont, toutes choses égales d'ailleurs, en proportion d'autant moindre que les communications entre la côte où on les observe, et les autres mers sont moins directes et moins faciles. Pour se rendre compte de la distribution géographique des Crustacés, on est donc conduit à regarder ces régions comme autant de foyers de création, où, parmi les espèces produites les unes sont restées cannibales dans leur patrie primitive, tandis que les autres se sont

Gaimard dans les Annales des Sciences naturelles, t. xiv, ne renferme que des remarques sur les localités visitées par ces voyageurs infatigables, et l'indication de quelques-unes des espèces qu'ils y ont rencontrées; on ne doit par conséquent pas y chercher la solution de la question que nous nous sommes proposée ici; mais on y trouvera des observations très intéressantes sur les mœurs de plusieurs Crustacés.
disséminées au loin et ont été se mêler aux habitans des régions voisines.

En effet, la présence dans un point restreint du globe, d'une espèce particulière qui ne se retrouve pas ailleurs, suppose nécessairement qu'elle est originaire de ce point, ou bien qu'après y être arrivée d'une autre région par émigration, elle aura été complètement détruite dans le lieu qui avait été le berceau de sa race, c'est-à-dire précisément là, où suivant toute probabilité, devaient se trouver réunies les conditions les plus favorables à son existence. Cette dernière hypothèse, fondée sur des suppositions que rien n'autorise, ne peut, dans l'état actuel de la science, satisfaire l'esprit, tandis que la première ne présente aucune difficulté sérieuse, et devient un guide utile dans les recherches du naturaliste. On peut donc l'adopter et admettre que l'existence, dans une région quelconque, d'espèces qui n'habitent pas ailleurs, indique la patrie originaire de ces mêmes espèces, On conçoit la possibilité d'échanges si multipliés entre des régions voisines, que toutes les espèces originales de l'une ou de l'autre soient devenues communes aux deux, et alors rien ne décelera au zoologiste leur séparation primitive; mais si, au milieu d'une faune commune, on trouve, limitées dans des aires distinctes, un certain nombre d'espèces, on sera conduit à penser que ces dernières proviennent de centres de création différents, et à les considérer comme caractéristiques d'autant de régions zoologiques particulières.

Ainsi, en comparant entre eux les Crustacés des diverses mers d'Europe, on voit que certaines espèces s'y rencontrent partout, depuis les côtes de la Norwège jusqu'au fond de la Méditerranée. Celles-là ne nous fournissent aucune donnée sur les localités dont elles peuvent être originales, et leur dissémination s'expliquerait également soit que toutes aient appartenu, dans le principe, à une seule et même région, soit que chacune ait été primitive limitée à une partie différente de la surface du globe. Mais on voit aussi que plusieurs espèces appartiennent exclusivement au littoral Scandinave; que d'autres habitent les mers Celtiques, et ne se rencontrent pas ailleurs; enfin que la Méditerranée possède aussi des espèces qui ne se
voient ni dans l'une, ni dans l'autre des deux régions dont nous venons de parler. On peut en conclure que les Crustacés de nos mers tirent leur origine d'au moins trois sources différentes, et caractérisent par conséquent l'existence de trois régions carcinologiques distinctes. Si on ne poussait pas cet examen plus loin, on pourrait croire, il est vrai, que ces différences dépendent de ce qu'un certain nombre des espèces de la région Celtique sont restées stationnaires dans ces parages pendant que les autres ont émigré au nord ou vers le sud, et ont été se mêler sur les côtes de la Norwège ou dans le bassin de la Méditerranée, avec des espèces qui à leur tour, étrangères dans ces mers, y seraient arrivées de quelque autre point du globe; s'il en était ainsi la région Celtique devrait seule être considérée comme le siège de l'un des trois foyers de création indiquée par la distribution géographique de ces animaux, et les deux autres pourraient avoir leur centre dans quelque autre point, dans les mers d'Asie ou d'Amérique par exemple. Mais si l'on compare également la faune carcinologique des côtes de la Norwège et de la Méditerranée, avec celles des autres parties connues du globe, on verra que l'une et l'autre se distinguent de toutes ces dernières par des différences du même ordre que celles qui ne permettent de les confondre, ni entre elles, ni avec la faune de la région Celtique. Il en résulte, que suivant toute apparence, il existait primitivement dans les mers d'Europe trois centres de création distincts et qu'on peut les considérer comme formant un égal nombre de régions carcinologiques.

§ 3. Dans l'état actuel de la science, il est impossible de reconnaître tous les centres de création auxquels semblent devoir être rapportés les divers Crustacés répandus à la surface du globe; mais on peut déjà en distinguer un assez grand nombre. Ainsi dans les mers d'Europe on compte, avons-nous dit, trois régions bien caractérisées; les côtes du Sénégal paraissent appartenir à une quatrième région dont il faudrait peut-être distinguer les îles Canaries; les eaux de l'île-de-France sont le centre d'une cinquième région; les mers de l'Inde et l'archipel
d'Asie en forment une sixième qu'il ne faut pas confondre ni avec la région du Japon, ni avec celle occupée par la Nouvelle-Hollande, la Nouvelle-Zélande et les terres voisines; les parages des îles Galapagos paraissent constituer, sous le rapport des Crustacés qui les habitent une autre région particulière; il en est de même pour le Chili et les terres Magellaniques; enfin, les Antilles, la portion septentrionale des États-Unis d'Amérique et les mers du Groënland, forment à leur tour autant de régions distinctes. Le nombre de ces régions carcinologiques actuellement constatées serait donc de treize, mais il est probable que par la suite on sera obligé de les multiplier davantage.

§ 4. La région septentrionale de l'Europe, que nous appel-lerons la région Scandinaue, embrasse les côtes de la Norvège et s'étend probablement vers le nord-est. Elle est caractérisée principalement par la Lithode arctique, par l'Hyas araignée, qui cependant se rencontre aussi dans la portion voisine de la région celtique, par le Nephrops et par quelques autres espèces moins remarquables, telles que l'Idotée entomon. A en juger par le nombre immense de Homards que l'on y pêche et que l'on expédie journellement pour le marché de Londres, il paraîtrait probable que cette région est aussi la patrie originaire de ce Crustacé, qui cependant est répandu dans les autres mers d'Europe. Du reste, dans ces parages septentrionaux, les espèces sont très peu variées, et parmi les Brachynres, les Oxyrhinques et les Cancériens, sont presque les seules familles dont on y trouve des représentants. (1)

§ 5. La région Celtique, qui comprend les côtes de la Manche ainsi que le littoral occidental de la France et de l'Angleterre, et qui me paraît devoir s'étendre vers l'Islande au nord, et vers le détroit de Gibraltar au midi, est bien plus riche en espèces, et

(1) Un petit Crustacé de la famille des Catamictes, le Nautilograpseoomine, qui est répandu dans presque toutes les mers, se rencontre quelquefois jusque sur les côtes de la Norvège; mais n'y arrive que très rarement, et ne paraît pas être un habitant ordinaire de cette région.
c'est surtout dans les groupes les plus élevés que cette progression est rapide. Sur les côtes de la Bretagne, qu'on peut considérer comme le centre de cette région, on trouve en plus grand nombre que partout ailleurs le Tourteau et le Carcin. ménade, qui se rencontrent aussi dans les deux autres régions de l'Europe; la plupart des espèces du genre Fortuné, le Maia squinado, le Pise tétraodon, plusieurs Inachus, le Xanthe floride, le Pagure hermite, la Langouste commune, le Palemon squille et plusieurs autres Décapodes y sont également très communs; mais toutes les espèces que nous venons de citer, ainsi que plusieurs autres, se rencontrent également dans la Méditerranée, et au premier abord on pourrait croire que toutes les mers tempérées et chaudes de l'Europe, devraient être considérées comme appartenant à une seule et même région carcinologique, dont le foyer serait dans la Méditerranée où se trouvent effectivement un nombre considérable d'espèces qui ne s'étendent que peu ou point vers le nord, mais il paraît en être autrement; car, les côtes de la Manche et de l'Océan, possèdent plusieurs espèces qu'on ne voit pas dans la région de la Méditerranée, et par conséquent ces parages ne peuvent être regardés comme une simple dépendance de cette division géographique. Au nombre de ces espèces caractéristiques de la région Celtique, nous citerons la Polybie de Henslow, l'Hyas resséré, l'Euryname rugueux, l'Athanase brillant et le Pandale annulicorne. L'abondance extrême de quelques espèces assez rares dans la Méditerranée, nous semblerait indiquer aussi que primitivement elles ont appartenu à cette région centrale, et que c'est par dissémination qu'elles se sont répandues sur les côtes septentrionales et méridionales de l'Europe; le Tourteau, le Carcin et l'Etrille sont de ce nombre. Nous ajouterons aussi que la faune carcinologique de la région celtique se fait remarquer par la prédominance des Oxyrhinques et des Portuniens, et par l'absence presque complète des Catométèopes, des Anomoures et des Squillians.

§ 6. La région méditerranéenne, qui paraît s'étendre un peu au-delà du détroit de Gibraltar, possède, comme nous venons de le
dire, la plupart des Décapodes qui habitent la région Celtique; mais ce qui la caractérise essentiellement, c'est la présence de
la Lupée hastée, du Lissa goutteux, du Mithrax dichotome,
de l'Herbstie noueuse, de l'Amathie de Roux, de la Latreillie
elégante, de l'Acanthonyx lunulé, de trois espèces particulières
de Lambres, du Calappe granuleux, de la Dorippe laineuse,
des deux Homoles, de plusieurs grands Pagures, du Scyllare
large, de la Squille mante et de quelques autres espèces moins
remarquables. Ici les Catométopes tendent à devenir plus nom-
breux, et quelques genres qui appartiennent presque exclu-
vivement aux régions équatoriales commencent à se montrer :
les Ocypodes, les Gélasimes, et les Phyllosomes par exemple.

§ 7. La faune carcinologique des îles Canaries diffère consi-
déramment de celle des régions dont nous venons de parler,
mais n'offre pas encore de caractères assez positifs pour indi-
quér nettement l'existence d'un centre distinct de création. On
rencontre dans ces parages un singulier mélange des Crustacés
des mers d'Europe, d'Afrique et même d'Amérique (1); mais
jusqu'ici on n'y a signalé l'existence que de deux espèces qui
n'avaient pas été rencontrées ailleurs, et de ces deux espèces, une
ne me paraît pas suffisamment distincte pour être admise sans
examen ultérieur. Il se pourrait donc que les eaux des îles Ca-
naries ne constituassent pas une région carcinologique parti-
culière, mais fussent en quelque sorte un terrain neutre où les
aires de plusieurs foyers de création viendraient se terminer, et
pour ainsi dire chevaucher les unes sur les autres.

§ 8. Les Crustacés des côtes du Sénégal et du Congo ne sont
encore que très imparfaitement connus, mais les espèces qu'on
y a trouvées sont si remarquables qu'elles me paraissent indi-
quér clairement l'existence d'une région particulière, dont cette
portion du littoral africain ferait partie. Telles sont certaines
espèces du genre Séarmacne, groupe naturel qui ne se rencontre

(1) Ne pourrait-on pas attribuer à l'influence du Gulf-stream le transport de ces derniers à
une distance si considérable de leur habitation ordinaire.
pas dans les mers d'Europe, mais qui est représenté par d'autres espèces dans l'Inde et aux Antilles.

§ 9. La région Madécasse, qui paraît s'étendre depuis le Cap jusque vers la mer Rouge, a été mieux explorée dans la partie qui avoisine l'Île-de-France. On y trouve plusieurs espèces qui se rencontrent également dans la mer Rouge, et jusque dans la mer des Indes, telles que la Mœnethie licorne, le Pise styx, le Gelasime tétragone, l'Ocypode ceratopthalme, le Calappe tuberculeux, la Dorippe rusée, la Ranine dentée, etc., mais elle se distingue de toutes les autres parties connues du globe, par l'existence du Sténocinops cervicorne, du Crabe sculpté, des Xanthes livides, imprimé, très poilu, rayonné, etc., de la Mélie trélissée, du Cyclograpse de Latreille, du Calappe coq, de l'Ixa canaliculée, et de plusieurs autres espèces faciles à reconnaître.

§ 10. La région carcinologique de l'Inde paraît s'étendre depuis la Mer Rouge, où elle se confond avec celle dont il vient d'être question, jusqu'à la Nouvelle-Guinée, ou même plus loin encore. Elle est de toutes les parties connues du monde la plus riche en espèces et celle surtout où les Cancériens et les Catométopes sont les plus abondants, tandis que les Macropodiens y sont comparativement rares. Parmi les Décapodes les plus remarquables qui habitent ces mers tropicales et qui n'ont pas encore été signalés ailleurs, nous citerons les Egeries et les Doclées, le Péricère cornigère, le Lupée de Tranquebar, le Thalamite admète, le Pseudocarcin de Rumph, les Sésarmes indienne et quadrilatère, la Varune lettrée, le Macrophthalme émarginé, les Matutes, la Leucosie craniolaire, l'Arcanie hérisson, la Dorippe quadridentée, la Dorippe camarade, le Birgus, les Langoustes fasciée, sillonnée, dasyppe et pénicillée, les Palémons orné, longirostre, etc., etc., les Pénéées monoceros, monodon et brévicorne, ainsi que l'Acète et plusieurs espèces de Pagures. Le Podophthalme vigil, la Lupée sanguinolente, les Grapses messager et strié, la Plagusie écailleuse, le Crabe ocyroé, le Crabe bordé, le Crabe de Savigny, le Carpile maculé, le Carpile convexe, le Zoïyme bronzé, un grand nombre de
Xanthes, de Lambres, de Thalamites, de Calappes, etc., habi
tent aussi ces parages, et la plupart de ces Crustacés semblent
même en être originaires, quoiqu'on les rencontre aussi dans
une ou plusieurs des régions voisines.

§ 1. Les Crustacés des mers du Japon commencent à être connus
des naturalistes par les travaux du célèbre voyageur Siébold et
de son habile collaborateur M. de Haan; mais ces savans n'ont
encore publié que les espèces appartenant aux trois familles des
Cyclométopes, des Catométopes et des Oxystomes : il serait, par
conséquent, prématuré de chercher à caractériser dès aujourd'hui
ceste région zoologique, et nous nous bornerons à dire que,
tout en ayant, sous le rapport des formes prédominantes, une
similitude très grande avec les mers de l'Inde, elle nous semble
être sous l'influence d'un foyer de création particulier ; car, au
milieu des espèces qui sont communes à ces parages et à la
région de l'Inde, on connaissait déjà plusieurs Décapodes qui
n'existent pas ailleurs ; les Ocidies, les Acanthodes, les Curto-
notes, les Eriochères et les Huénies, par exemple. Peut-être
faudra-t-il aussi par la suite considérer les mers du Kamtschatka
comme une autre région carcinologique : le peu que Krusenstern
nous en a appris semble l'indiquer, et, chose remarquable, dans
ces latitudes élevées du grand Océan, on retrouve des formes
analogues à celles qui se voient dans la région Scandinave. (1)

§ 12. Les côtes de la Nouvelle-Zélande et de la portion extra-
tropicale de la Nouvelle-Hollande sont habitées par divers Crus-
tacés qui paraissent être particuliers à ces parages, et, par consé-
quent, cette région australasienne semble être du domaine d'un
foyer de création distinct. Parmi les espèces qui le caractérisent,
notions la Naxie serpulifère, le Pseudocarcin géant, le
Xanthe à crêtes, le Fortune front entier et la Tha amite à doigts
rouges, et à ces Crustacés que l'on peut considérer comme

(1) Les Lithodes des côtes de la Norvège diffèrent à peine de celles du Kamtschatka. Le
Crangon boréal, qui se trouve au Spitzberg et sur les côtes du Groenland, paraît être représen-
té par une espèce peu ou point différente au Kamtschatka et sur la côte opposée de l'Amé-
rique.
aborigènes, se mêlent d'autres espèces qui semblent être venues des régions de l'Inde et du Japon, ou du moins qui existent également dans ces mers éloignées.

§ 13. Nous ne savons rien sur les Crustacés de la côte occidentale de l'Amérique du Nord, et nos connaissances sont encore très limitées sur les animaux de cette classe qui habitent près des côtes de la Colombie et du Pérou; mais, d'après les collections faites aux îles Galapagos par M. Cuming, et décrites en grande partie par M. T. Bell, il nous paraît évident que cette partie du grand Océan doit constituer une région carcinologique particulière. Pour s'en convaincre, il suffit de jeter les yeux sur la longue liste d'espèces nouvelles et même de genres distincts, qui ont été découverts dans ces parages et qui n'ont pas été trouvés ailleurs (1). L'aspect général de cette faune carcinologique est même très différente de celui qu'offre l'ensemble des espèces dont les mers d'Asie et de l'Australasie sont peuplées; car ici ce sont les Oxyrhinques qui dominent.

§ 14. Les côtes du Chili et de la Patagonie paraissent appartenir à une autre région qui, toutefois, se lie assez étroitement à la précédente. Outre plusieurs espèces qui se trouvent également dans les mers de la Colombie, on y rencontre l'Epialte denté, l'Eurypode de Latreille, deux espèces du genre Leucippe, une Atélécycle particulière, une Hépate nouvelle, plusieurs espèces très remarquables de Platycarcins, de Porcellanes, de Pagures et de Palémon, qu'on n'a pas encore vues ailleurs, ainsi qu'une Grapse et une Plagiusie des mers de l'Australasie, et l'Eriphie gonagre, qui habite également les côtes du Brésil et des Antilles. Cette région paraitrait comprendre les mers qui baignent les deux versans de la portion froide et tempérée de l'Amérique méridionale; mais elle ne doit pas être confondue avec une

(1) Parmi les espèces les plus remarquables de cette région nous citerons le Tyche lamelliforme, le Pericera villosa, le P. ovata, l'Acanthonyx emarginata, l'Othonia sexdentata, le Mi-thrax pygmeus, le M. nodosus, le M. ursus, le M. denticulatus, le Pisa spinipes, le P. aculeata, le Rhodia pyiformis, le Thocea croa, l'Herbstia Edwardsii, le Memorhynchus depressus, le M. gibbosus, le Lébina rostrata, et l'Eurypodius Cuvierii.
autre division géographique, dont le centre est aux Antilles et dont les limites s'étendent jusqu'au Brésil, d'une part, et jusqu'à la Caroline, de l'autre.

§ 15. Cette dernière région, qu'on pourrait appeler la région Caraïbe, est caractérisée par plusieurs espèces particulières des genres Mithrax, Grapse et Lupée, par le Carpine corallin, le Pâgue granulé, divers Langoustes, le Palémon de la Jamaïque, l'Atye scabre, etc. Enfin c'est aussi la patrie de la Leptopodie sagittaire et de plusieurs autres Crustacés remarquables, qui se rencontrent quelquefois dans des parages plus ou moins éloignés.

§ 16. La portion septentrionale des côtes des États-Unis d'Amérique, ou région Pennsylvanienne, constitue une division carcinologique distincte de la précédente, mais dans laquelle on trouve plusieurs espèces originales de la mer des Antilles, la Lupée dicanthe, le Sésarme cendré et le Gélasime appelant, par exemple. Du reste, on y rencontre un Homard gigantesque, un Platyonyque, un Platycarcin, des Panopées et quelques autres espèces qui ne paraissent pas exister entre les tropiques.

§ 17. Enfin la faune carcinologique des mers qui s'étendent depuis Terre-Neuve jusqu'au Spitzberg, au Groenland et à la baie de Baffin, est encore en grande partie une création distincte de toutes celles dont nous nous sommes déjà occupés. Dans cette région polaire, les Décapodes brachyures cessent presque entièrement de se montrer et ne sont représentés que par quelques Macroures nouveaux, tels que le Crangon boréal, l'Hippolyte marbré et les espèces les plus caractéristiques appartenant à l'ordre des Amphipodes; on y retrouve en même temps un petit nombre d'espèces communes aux parties moins boréales du littoral américain ou bien à la région Scandinave de l'ancien continent.

§ 18. Si l'on compare entre eux les Crustacés de ces différentes régions, on voit que les individus d'une même espèce sont presque toujours rassemblés dans des mers voisines, et, pour ainsi dire cantonnés dans des régions limitrophes. La plupart de ces animaux n'émigrent pas à des distances considérables des
eaux où ils semblent avoir été primitivement placés, et en
 général une grande étendue de haute mer est un obstacle qui
 arrête leur dissémination. En effet, rien n’est plus rare que de
 trouver la même espèce sur des points de la surface du globe
 très distans entre eux, et séparés par une barrière semblable,
et, à l’exception du Nautilograpsus et d’un très petit nombre de
 Crustacés, essentiellement pélagiens, je ne connais aucune es-
pèce qui soit commune aux mers d’Europe et aux côtes des Etats-
Unis ou des Antilles, ou qui habite en même temps ces derniers
parages et l’Océan indien. Les Crustacés non pélagiens des
mers d’Asie sont également tous différents de ceux du littoral
européen; enfin les côtes occidentales de l’Amérique du Sud sont
aussi séparées de celles de l’Inde et de l’Australasie par des limites
qui semblent être presque infranchissables à ces animaux. D’un
autre côté, les diverses régions carcinologiques ont entre elles
des espèces communes, en proportion d’autant plus grande
qu’elles sont plus rapprochées géographiquement et qu’elles sont
séparées par des barrières naturelles moins tranchées. Ainsi les
trois régions qui se partagent les côtes de l’Europe possèdent
en commun la plupart des espèces qui les habitent, et il en est
de même, soit pour les diverses régions de l’Asie et de l’Océanie,
soit pour les eaux qui baignent les côtes du Nouveau-Monde.
Pour se convaincre du fait, il suffira, ce me semble, de jeter
les yeux sur le tableau qui est joint à ce Mémoire, et qui donne
la liste des diverses espèces de Décapodes dont l’existence a été
constatée dans ces grandes divisions géographiques. (1)

L’immense majorité des faits militent donc en faveur de l’opini-
ion que, pour ces animaux marins comme pour les végétaux
terrestres, chaque espèce a dû avoir son origine dans une région
déterminée, et que c’est en s’irradiant de ces divers centres de
création, qu’ils se sont étendus plus ou moins loin sur la surface
de la terre, et qu’ils se sont mêlés entre eux dans des localités in-
termédiaires. En tenant compte de la configuration des côtes, il
est presque toujours facile de s’expliquer comment ces émigra-

(1) Voyez le tableau n° 1.
des Crustacés.

ions ont pu s'effectuer et on remarque que ce sont les espèces les mieux conformées pour la nage, qui se sont le plus dissémi-
nées. Nous avons signalé, il y a un instant, quelques exceptions à la règle générale que la nature semble avoir tracée pour la délimitation des grandes divisions carcinologiques du globe; or, ces exceptions viennent précisément à l'appui de la thèse que nous soutenons ici; car ces Crustacés cosmopolites sont au nombre des espèces auxquelles les longs voyages maritimes doivent être les plus faciles. Ainsi les Phyllosomes et les Erich-
tiens, qu'on trouve dans les deux Océans, sont des animaux
essentiellement pélagiens, qui ne se rencontrent guère qu'en haute mer et qui, nageant sans fatigue au sein des eaux, doivent pouvoir se répandre avec le temps dans tous les parages dont la température est compatible avec leur existence. Le Conodactyle goutteux, qui se voit dans les mers de toutes les parties chaudes du globe, est également conforme pour nager avec une grande facilité, et, de même que les autres Squilliens, ne se rapproche que peu des côtes. Le Nautilograpse minime, par la structure de ses organes locomoteurs, semblerait devoir être plus sédentaire et ne pas pouvoir s'éloigner beaucoup de terre; cependant on le rencontre dans presque toutes les parties du monde; car je n'ai pu découvrir aucune différence spécifique entre le petit Crustacé de l'Australasie, désigné par Lamarck sous le nom de
Grapsus uni, le Grapse cendré des Etats-Unis, le Turtle-Crab, signalé par Brown sur les côtes de la Jamaïque; le Grapsus testi-
dinum, décrit par Roux comme une espèce nouvelle, propre à la Méditerranée, le Grapse minime de nos mers et des indivi-
dus du même genre, recueillis par les voyageurs du Museum, sur les côtes du Chili et dans les eaux de l'Île-de-France. Mais une particularité de ses mœurs nous explique cette dissémina-
tion; en effet ce petit Crustacé a l'habitude de s'accrocher aux tortues marines qui le transportent au loin avec elles, et il n'est pas rare de le rencontrer au milieu de l'Océan flottant sur le sargasso ou sur quelque autre plante que les courans en-
traînent. Suivant toute probabilité, c'est ce même Nautilograpse qui fut signalé par Colomb en pleine mer dix-huit jours avant la découverte du Nouveau-Monde, et qui fournit à ce grand
navigateur un argument de plus à l'appui de ses prédictions (1). Les Gélasimes et quelques Portuniens ont des habitudes analogues, et par conséquent il est probable que l'aire occupée par une même espèce est également très considérable pour plusieurs de ces Crustacés ; mais jusqu'ici on n'en connaît pas qui soient réellement cosmopolites.

Parmi les Crustacés qui, sans être sortis des grandes divisions géographiques indiquées plus haut, se sont cependant répandus à de grandes distances, dans des régions limitrophes, on remarque surtout les Lupées, qui sont aussi au nombre des Brachyures les mieux organisés pour la nage. La Lupée dicanthe, par exemple, se trouve aux États-Unis, aux Antilles, au Brésil et jusque sur la côte opposée de l'Amérique septentrionale. La Lupée pélagique se rencontre depuis la Mer-Rouge jusqu'au Japon, et la Lupée sanguinolente depuis la côte orientale de l'Afrique jusqu'aux îles de la Société, c'est-à-dire dans une étendue de plus de quatre mille lieues.

Il est d'autres Crustacés dont la dissémination s'explique facilement, bien qu'à l'âge adulte ils paraissent condamnés à vivre sédentaires près des côtes ; ce sont les espèces qui dans le jeune âge ressemblent à des Macroures, et ont l'abdomen terminé par une large nageoire, mais subissent plus tard des métamorphoses et perdent alors leurs organes natateurs. Les Dromies sont dans ce cas, et pendant qu'elles sont douées de cette conformation transitoire, elles doivent pouvoir émigrer à des distances considérables et transporter au loin leur race sédentaire. Tous les Crustacés Brachyures, ne paraissent pas subir de semblables métamorphoses postérieurement à leur sortie de l'œuf, et par conséquent ne doivent pas se disperser avec la même facilité ; mais il est probable que plusieurs sont dans ce cas, les Grapses par exemple, et lorsqu'on aura constaté le caractère des modes de conformation propre à chaque espèce, dans le jeune âge aussi bien qu'à l'état adulte, on trouvera, je n'en doute pas, l'explication de plusieurs circonstances qui embar-

(1) Voyez Historia de el almirante D. Cristoval Colon, par son fils, chap. viii, (Collect. de Parcia, t. 1, p. 16, colonne 2.)
rassent maintenant dans l'étude de la distribution géographique de ces animaux marins.

§ 19. Nous avons vu que les espèces communes à plusieurs régions sont ordinairement en proportion d'autant plus forte dans la faune carcinologique de ces diverses localités, que les communications entre ces mêmes régions sont plus faciles (1). Il est aussi à noter que lorsqu'une espèce identique se rencontre à des distances très considérables, elle se trouve aussi presque toujours dans les mers intermédiaires, de façon que sa dispersion actuelle se comprend en supposant que des émigrations successives ont étendu peu-à-peu l'aire qu'elle occupe sur la surface du globe. Presque toujours on peut s'expliquer d'après la configuration actuelle des terres, la manière dont cette propagation de proche en proche a pu s'effectuer. Il est cependant quelques exceptions à cette règle qui méritent d'être signalées.

Ainsi le Néphrops qui habite les côtes de la Norvège, et qui ne se voit ni dans la Manche, ni sur les côtes de l'Océan, se retrouve au fond de l'Adriatique; il y est assez commun pour être vendu sur les marchés de comestibles à Venise, et l'examen le plus attentif ne m'a fait découvrir entre les individus de

(1) Au nombre des circonstances physiques qui favorisent la dissémination d'une espèce, nous devons citer : 1° l'existence d'une longue ligne de côtes continues dans une zone comprise entre des latitudes dont les températures ne diffèrent pas excessivement; 2° l'existence d'îles situées dans les mêmes conditions, à des distances peu considérables; 3° l'existence de grands courants périodiques qui peuvent entraîner à la dérive des animaux, dont le pouvoir locomoteur est médiocre et les transporter à des distances d'autant plus grandes que ces êtres sont capables de rester plus long-temps éloignés de terre.

C'est peut-être à cette dernière circonstance qu'il faut attribuer la présence de quelques Crustacés d'Amérique sur les côtes des îles Canaries. On sait, en effet, que le grand courant, désigné sous le nom de Gulf-stream, après avoir longé la côte de la Floride et de la Caroline, et avoir passé sur l'extrémité sud du grand banc de Terre Neuve, se dirige vers les Açores et se recouvre ensuite vers le sud, pour se confondre au-delà des Canaries avec le courant équatorial, et c'est par son influence que des fruits et autres corps légers, provenant de l'Amérique, ont souvent été jetés sur ces côtes. Le contre-courant ou remous, qui se fait sentir du sud vers le nord, le long de la côte orientale de l'Afrique, peut aussi avoir contribué à transporter les Crustacés de la région Madécasse jusque dans la Mer Rouge, tandis que le grand courant équatorial, qui se dirige de l'est vers le Cap, a dû faciliter l'émigration de ces animaux de l'Inde vers l'Ile-de-France. D'après ces considérations, on voit combien il serait intéressant de connaître la faune carcinologique des Açores, du canal Mozambique, etc.

IX. Zool. — Septembre.
ces parages si éloignés, aucun caractère constant qui indique une différence spécifique. Il serait bien difficile de s'expliquer comment ce Crustacé aurait pu se transporter de Drontheim à Venise par les mers actuelles sans s'arrêter sur nos côtes, et l'on doit se demander si la nature qui a souvent produit dans des régions éloignées des espèces très analogues, quoique distinctes, aurait été jusqu'à créer dans ces deux points si différents, deux souches identiques, ou bien, si l'existence de cet animal remonterait à une époque à laquelle une communication maritime entre les mers Scandinaves et la Méditerranée, aurait existé du côté de l'orient. La géologie nous donnera peut-être un jour, la solution de cette question.

Une autre difficulté résulte de la distribution géographique du Grapse messager. Ce Crustacé, qui est commun dans la mer Rouge, et qui habite également diverses parties du littoral indien, se retrouve sur la côte nord de l'Afrique et même aux îles Canaries; il ne paraît pas avoir passé des mers d'Asie dans l'Atlantique et ses dépendances, en doublant le Cap-de-Bonne-Espérance, car on ne l'a encore rencontré ni dans cette dernière localité, ni dans les eaux de l'Ile-de-France, et d'un autre côté les Grapses périsissent trop promptement lorsqu'on les retire de l'eau, pour qu'on puisse supposer qu'il aurait passé de la mer Rouge dans la Méditerranée, en traversant l'isthme de Suez, et ici encore on serait porté à soupçonner que la dispersion actuelle de l'espèce, s'est effectuée avant que cette partie de la terre n'ait eu sa configuration actuelle, et à une époque où la Méditerranée communiquait librement avec l'Océan-Indien (1). Dans l'état actuel de la science des spéculations de ce genre n'offrent pas assez d'intérêt pour fixer long-temps notre attention; mais elles méritent d'être indiquées et lorsque la distribution géographique des animaux marins, et la distribution géologique de leurs débris fossiles seront mieux connues, on pourra peut-être en tirer des déductions utiles.

(1) Le Thalamite admette, qui est très répandu dans les mers d'Asie, se retrouve aussi aux îles Canaries, et ce que nous venons de dire du Grapse messager est également applicable à ce Crustacé, qui cependant est bien mieux conformé pour la nage.
§ 20. L’étendue de la puissance locomotive des Crustacés, et la configuration des mers, ne sont pas les seules circonstances qui limitent et qui règlent le mode de dispersion de ces animaux sur les diverses parties de la surface du globe ; l’influence de la température sur ce phénomène nous paraît également évidente, et c’est peut-être cette influence seule qui a empêché la plupart des Crustacés de se répandre de proche en proche, tout le long du littoral des deux mondes, et qui a maintenu les faunes carcinologiques des diverses régions plus ou moins distinctes. En effet, pour ces êtres, de même que pour les animaux supérieurs et pour les végétaux, il est des extrêmes de température qui paraissent être incompatibles avec la vie, et ces extrêmes varient suivant les espèces, les genres et les familles naturelles. Des expériences directes donneraient probablement sur ce sujet des résultats importants, mais elles n’ont pas encore été tentées, et pour y porter quelque lumière on ne peut, dans l’état actuel de la science, qu’interroger la géographie zoologique.

Le premier fait dont on est frappé lorsqu’on étudie sous ce point de vue la faune des diverses mers, c’est la grande différence numérique des espèces à des latitudes différentes. Il ne paraît pas que les Crustacés soient individuellement moins nombreux dans les régions froides du globe, que dans les mers équatoriales. La pêche abondante du Homard sur les côtes de la Norvège, ainsi que les bancs de Mysis, et autres petits animaux de la même classe dont les Baleines et les divers poissons font leur pâture dans les mers glaciales, peuvent faire penser qu’il en est autrement ; mais, ce qui n’admet pas de doute, c’est que les formes et les modes d’organisation de ces animaux tendent à devenir de plus en plus variés à mesure que l’on s’éloigne des mers polaires pour se rapprocher de l’équateur.

Ainsi les côtes de la Norvège, que nous venons de citer comme étant si riches en individus, ne sont habitées que par un très petit nombre d’espèces. À peine y compte-t-on plus d’une quinzaine de Décapodes, et dans les autres ordres les formes spécifiques ne varient guère davantage. Dans les eaux de la Manche, les espèces diverses de ces mêmes Décapodes sont environ cinq fois plus nombreuses. Sur le littoral de la Méditerranée, les
différences spécifiques se multiplient davantage, et leur nombre comparé à celui des espèces de la région Scandinave, devient dans le rapport de sept à un. Si l'on passe ensuite de la Méditerranée dans les mers de l'Inde, on voit cette progression se continuer encore, car dans l'état actuel de la science on compte déjà dans ces parages éloignés, plus de deux fois autant de Crustacés Décapodes que dans la région Celtique, dont l'exploitation a cependant dû avoir été faite d'une manière bien plus complète. Enfin dans l'hémisphère sud, vers l'extrémité méridionale de l'Afrique et sur les côtes de l'Australasie, le nombre des espèces décroît de nouveau de la manière la plus évidente. (1)

Une tendance analogue se remarque dans le Nouveau-Monde. Dans les mers glacées du Groenland, les espèces sont très peu variées; elles le deviennent beaucoup plus sur les côtes des États-Unis d'Amérique, et sont plus nombreuses encore dans la région équatoriale des Antilles et du Brésil. (2)

Une coïncidence aussi constante entre l'élévation de la lati-

(1) Les nombres des Décapodes et des Stomapodes inscrits dans les tableaux joints à ce Mémoire sont, pour

<table>
<thead>
<tr>
<th>Région</th>
<th>Espèces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scandinave</td>
<td>15</td>
</tr>
<tr>
<td>Celtique</td>
<td>82</td>
</tr>
<tr>
<td>Méditerranéenne</td>
<td>114</td>
</tr>
<tr>
<td>Indienne</td>
<td>201</td>
</tr>
<tr>
<td>Australasienne</td>
<td>69</td>
</tr>
<tr>
<td>Madécasse</td>
<td>56</td>
</tr>
</tbody>
</table>

Mais il est à noter que ces deux dernières régions n'ont été que très incomplètement explorées, de façon que le nombre des espèces y est probablement plus élevé qu'on ne le croirait d'après cette évaluation (D'après quelques renseignements que je reçois au moment de mettre cette feuille sous presse, il paraîtrait aussi que le nombre des Décapodes de la région Scandinave est beaucoup plus considérable qu'on ne le pensait; mais ces observations nouvelles ne détruisent en rien les conclusions générales auxquelles je suis arrivé relativement à l'augmentation du nombre des espèces avec la température). Quant aux Edriophilumes et aux petits Crustacés des ordres inférieurs, nous n'en tenons pas compte ici, parce qu'on ne se courait guère que les espèces propres à nos mers.

(2) Les nombres des espèces de Décapodes signalés dans ces divers parages sont, pour

<table>
<thead>
<tr>
<th>Région</th>
<th>Espèces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groenlandaise ou polaire</td>
<td>12</td>
</tr>
<tr>
<td>États-Unis</td>
<td>37</td>
</tr>
<tr>
<td>Caraïbe</td>
<td>71</td>
</tr>
<tr>
<td>Chiliennne</td>
<td>39</td>
</tr>
</tbody>
</table>
tude, et la diminution des espèces différentes ne peut être l'effet du hasard, et tout porte à croire que la température plus ou moins élevée des diverses mers, est une des principales circonstances régulatrices de la diversité plus ou moins grande des animaux, dont la distribution géographique nous occupe ici.

Cette opinion acquiert une nouvelle force lorsqu'on compare sous le rapport du nombre des espèces, certaines régions de l'Ancien et du Nouveau-Monde, dont les latitudes sont semblables. Les côtes du Groënland et de la Norvège sont situées à-peu-près sous les mêmes parallèles, mais, comme on le sait, elles ne jouissent pas de la même température moyenne. Le Groënland est bien plus froid que la Norvège; or, le Groënland est aussi bien plus pauvre en Crustacés.

Ainsi, soit que l'on compare entre elles les diverses régions de l'Ancien ou du Nouveau-Monde, soit que l'on compare, sur les côtes des deux continens, les mers polaires, on remarque une même tendance. Dans l'un et l'autre cas l'élévation de la température correspond à une augmentation dans le nombre des espèces, c'est-à-dire, à une diversité plus grande dans les formes et dans la structure de ces animaux marins, et il est digne de remarque qu'un résultat analogue ressort de l'étude de la distribution, soit des animaux, soit des plantes qui vivent sur la terre.

Je me garderai de hasarder une opinion sur les relations de causes et d'effets qui peuvent exister entre ces deux phénomènes, et de chercher par exemple, si cette diversité de structure, croissante avec la température, peut dépendre de l'influence même de la chaleur sur le développement de ces êtres, qui d'ordinaire se ressemblent d'autant plus entre eux que ce développement est moins avancé, moins complet; les faits manquaient bientôt à une pareille investigation et par conséquent elle sortirait du domaine de la science. Mais je crois utile de faire remarquer que si l'on attribuait à la chaleur seulement cette diversité organique, on tomberait dans l'erreur; car le nombre des espèces n'est pas toujours proportionnel à la température, et, en Amérique par exemple, les Crustacés sont moins variés que dans les régions isothermes de l'ancien continent.
Ainsi les côtes des États-Unis, comprises entre Charlestown et New-York, quoique aussi méridionales que les bords de la Méditerranée, et baignées par un immense courant d'eau chaude venant du golfe du Mexique, sont moins riches en animaux de cette classe, que la Manche, et la mer tropicale des Antilles est loin de fournir une liste d'espèces aussi longue que la mer des Indes; elle est même plus pauvre que la Méditerranée, dont la température est cependant bien moins élevée (1). Du reste ces irrégularités ne détruisent en aucune façon la conclusion à laquelle nous étions arrivés, touchant la tendance de la nature à multiplier les différences spécifiques à mesure que la température s'élève; elles montrent seulement que la distribution géographique de ces animaux, ainsi qu'on devait bien s'y attendre, est une question complexe dont les divers éléments ne nous sont pas tous connus.

§ 21. Du reste, les différences de formes et d'organisation ne sont pas seulement plus nombreuses et plus caractérisées dans les régions chaudes que dans les régions froides du globe; elles y sont aussi plus importantes. Le nombre des groupes naturels dans lesquels les espèces se répartissent augmente graduellement avec la température des eaux qu'elles habitent, et c'est parmi les Crustacés des mers équatoriales qu'on rencontre les modes de structure les plus dissemblables. En effet, presque tous les principaux types d'organisation qui se voient dans les mers polaires se retrouvent également dans les régions tropicales, tandis que dans ces derniers parages il existe un grand nombre de types particuliers qui ne se rencontrent pas ailleurs, ou qui sont à peine représentés à des latitudes un peu élevées. Pour que la distribution méthodique des Crustacés retrace fidèlement les différences introduites par la nature dans la conformation de ces êtres, et indique l'importance relative de ces modifications

(1) On voit, par conséquent, que l'on s'exposerait à de graves erreurs, si l'on cherchait à évaluer d'une manière absolue la température d'une région d'après la considération de sa faune carcinologique seulement, et ce que nous disons des régions actuelles doit s'appliquer aussi aux diverses époques géologiques.
de structure, il faut diviser la classe entière en trois groupes : les Crustacés Maxillés, les Suceurs et les Xyphosures. Or, de ces trois groupes, deux seulement sont représentés dans les régions froides du globe, tandis que tous les trois se voient rassemblés dans les mers équatoriales. Le groupe tout entier des Décapodes Brachyures, ainsi que la division des Anomoures, paraissent être exclus des latitudes élevées du Spitzberg et de la mer de Baffin ; les navigateurs qui, dans ces dernières années, ont exploré les mers polaires, n'y ont trouvé que des Crustacés appartenant à la division des Edriothalames, à celle des Entomostracéens, ou à la section des Décapodes Macroures ; il est bien possible que des Branchiopodes et des Crustacés Suceurs existent aussi dans ces parages lointains, et qu'ils aient échappé à l'observation à raison de leur petite taille, mais on ne peut supposer qu'il en aurait été de même pour des Décapodes Brachyures, qui, semblables à nos Crabes, doivent par leur volume et leur forme attirer bien davantage l'attention des collecteurs. Sur les côtes méridionales du Groenland, on commence à trouver de ces Brachyures, mais on n'en a signalé dans cette région que deux espèces. La section des Décapodes Anomoures ne paraît commencer à être représentée que sur les côtes de l'Islande et de la Norwège. La famille principale de l'ordre des Stomapodes, celle des Squilliens ne dépasse pas la Manche et ne se rencontre même que rarement au-delà du quarante-cinquième degré de latitude nord ; enfin le groupe des Phyllosomes et des Erichthiens est limité à des parallèles moins élevés, car c'est à peine s'il se montre dans les eaux de la Méditerranée. Or, je le répète, tous ces types existent simultanément dans les mers intertropicales.

§ 22. L'étude de la distribution géographique des Crustacés fait apercevoir aussi une coïncidence remarquable entre la température de la mer et la perfection organique plus ou moins grande des espèces qui l'habitent. Les types qui disparaissent à mesure qu'on s'avance vers les hauts latitudes sont ceux dont l'organisation est la plus compliquée, et non-seulement les Crustacés les plus élevés dans l'échelle manquent dans les régions
polaires, mais leur nombre relatif croît rapidement du nord vers l’équateur.

Si effectivement on rangeait ces animaux en série, d’après le degré relatif de perfection et de complication qu’offre leur structure anatomique, les Décapodes Brachyures se trouveraient en tête et seraient suivis par les Anomoures, tandis que les Macroures ne prendraient place qu’au troisième rang, et les Edriophthalmes se trouveraient relégués plus bas encore (1).

Or, dans les parages les plus rapprochés du pôle, au Spitzberg et dans la mer de Baffin, on a rencontré des Edriophthalmes d’espèces assez variées et quelques Macroures, mais point de Brachyures (2); sur les côtes méridionales du Groënland et de la Norwège, il en existe; mais leur nombre, comparé à celui des autres animaux de la même classe, est extrêmement faible : au Groënland, par exemple, les Décapodes n’entrent que pour un tiers dans le nombre total des Crustacés portés sur les catalogues des zoologistes, et de ce tiers les trois quarts appartiennent à la division des Macroures. Sur les côtes de la Norwège, où le froid est moins rigoureux, les Décapodes paraissent devenir à-peu-près aussi nombreux que les Edriophthalmes, et on compte autant de Brachyures que de Macroures.

Dans la Manche et dans la Méditerranée, ainsi que sur les côtes des États-Unis d’Amérique, les Décapodes l’emportent de beaucoup sur les Edriophthalmes; on y rencontre près de deux fois autant de Brachyures que de Macroures, et le nombre relatif des Décapodes Anomoures s’élève aussi. Dans la région des Antilles, deux Macroures correspondent à-peu-près à un Anomoure

(1) Les Entomostracés et les Crustacés suceurs, qui occupent les degrés inférieurs de la série carcinologique, sont trop imparfairement connus pour que nous puissions en tenir compte dans cette revue générale de la répartition des espèces; mais les Décapodes et les Edriophthalmes, dont nous connaissons bien mieux la distribution géographique, forment à eux seuls la presque totalité de la classe entière des Crustacés, et par conséquent, nous suffisent pour les recherches dont nous nous occupons ici.

(2) Les Crustacés observés par MM. Parry, Sabine, Ross, etc., sont à-peu-près les mêmes dans la mer de Baffin et au Spitzberg; ils sont de très petite taille, et appartiennent presque tous à la division des Edriophthalmes. On a trouvé dans ces parages éloignés sept espèces de Macroures (2 Crangons et 5 Hippolytes), une espèce de Mysis, et 14 espèces d’Edriophthalmes.
et à cinq ou six Brachyures. Enfin, dans les mers de l'Inde, ces mêmes nombres de Macroures et d'Anomoures correspondent à environ dix Brachyures, tandis qu'en procédant plus loin vers le sud, sur les côtes de l'Australasie par exemple, le nombre des Brachyures connus n'est guère que quatre fois plus considérable que celui des Macroures. (1)

Lorsqu'on connaîtra mieux la zoologie maritime de ces régions éloignées, il est à présumer que ces proportions changeront plus ou moins; mais il nous paraît bien peu probable que la tendance générale indiquée par des observations nombreuses déjà recueillies soit infirmée; car nous ne voyons aucune raison pour supposer que les voyageurs, en visitant les mers du Nord, auraient négligé les Brachyures pour ne s'occuper que des Macroures, tandis qu'en explorant les régions tropicales ils auraient suivi sans exception une marche inverse.

Ainsi, tout nous porte à croire que l'élévation de la température des eaux est accompagnée non-seulement d'une multiplicité plus grande des espèces et de différences plus considérables dans le mode de structure des Crustacés, mais aussi d'une tendance plus marquée vers la complication et le perfectionnement organique de ces animaux: aucun climat ne paraît être incompatible avec l'existence de Crustacés peu élevés dans la série naturelle (2); mais ceux qui occupent le plus haut rang

(1) Voici le chiffre du relevé des diverses espèces de Brachyures, d'Anomoures et de Macroures dont j'ai pu jusqu'ici constater suffisamment la présence dans ces diverses régions.

<table>
<thead>
<tr>
<th>Région</th>
<th>Brachyures</th>
<th>Anomoures</th>
<th>Macroures</th>
</tr>
</thead>
<tbody>
<tr>
<td>scandinave</td>
<td>4</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>celtique</td>
<td>44</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>méditerranéenne</td>
<td>59</td>
<td>16</td>
<td>33</td>
</tr>
<tr>
<td>indienne</td>
<td>117</td>
<td>21</td>
<td>37</td>
</tr>
<tr>
<td>australienne</td>
<td>48</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>madécasse</td>
<td>40</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Mer de Baffin</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>Côtes du Groenland</td>
<td>2</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>des Etats-Unis</td>
<td>20</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>Région caraïbe</td>
<td>50</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>Région chilienne</td>
<td>24</td>
<td>9</td>
<td>8</td>
</tr>
</tbody>
</table>

(2) Le capitaine Parry a trouvé des Amphipodes dans les parages du Spitzberg par 82 degrés de latitude nord.
54 MILNE EDWARDS. — Distribution géographique
dans cette série sont exclus des régions les plus froides du globe,
et deviennent, relativement aux premiers, de plus en plus
nombreux des pôles vers l'équateur.

§ 23. Si, au lieu de nous en tenir aux grandes divisions de la
classe des Crustacés, nous descendons à quelques exemples par-
ticuliers, nous verrons encore surgir la même tendance générale.
Toutes choses égales d'ailleurs, les animaux aquatiques sont
ordinairement moins élevés en organisation que ceux conformés
pour habiter sur la terre; pour s'en convaincre, il suffit de con-
sidérer le règne animal dans son ensemble, ou de passer rapi-
dement en revue chacune des grandes divisions dont il se com-
pose. Or, les Crustacés sont presque tous des animaux aqua-
tiques; mais, parmi les êtres les plus élevés de cette classe, on
trouve des Crabes qui ont des habitudes différentes et qui vivent
constamment à terre. Par analogie, on peut donc penser que ces
Crabes de terre ou Gecarciniens doivent prendre place en tête
de la série naturelle formée par tous ces êtres; et si une haute
température est réellement une condition d'existence pour les
espèces les plus élevées, on ne devra les rencontrer que dans
les régions les plus chaudes du globe; et effectivement, c'est ce
qui a lieu: dans les contrées froides et tempérées, on n'en con-
nait aucune espèce, mais ils se rencontrent dans la zone torride
de l'Ancien et du Nouveau-Monde.

Les tribus qui ont pour types les Ocypodes et les Grapses, et
qui établissent le passage entre les Crabes de terre et les Branchyures ordinaires, s'étendent plus loin de l'équateur, mais de-
viennent extrêmement rares dans les pays tempérés, et ne se
montrent plus à des latitudes très élevées.

Parmi les Crustacés aquatiques, on en connaît, mais en très petit
nombre, qui vivent loin de la mer et qui habitent les ruisseaux.
Or, dans les régions tropicales, ces Décapodes fluvitaires se rap-
portent au type le plus élevé de cet ordre, à la division des
Branchyures, tandis que dans les régions tempérées et froides
des deux hémisphères, tous appartiennent au groupe inférieur
des Macroures. Effectivement, vers l'extrémité méridionale de
l'Europe, en Égypte, en Perse, dans l'Inde et dans les parties
les plus chaudes de l'Amérique, on rencontre partout des Crables de rivière ou Thelphusiens, tandis que dans les autres parties de l'Europe, dans l'Amérique septentrionale, au Chili ; au Cap de Bonne-Espérance et dans la partie sud de la Nouvelle-Hol
lande, ce sont des Écrevisses d'espèces particulières qui peuplent les eaux douces, et il n'existe aucune espèce de Brachyures fluviatiles.

§ 24. Lorsqu'on compare entre eux les Crustacés des différentes parties du monde, on remarque une autre tendance qui paraît avoir aussi un rapport avec la température. Dans les régions chaudes, la taille de ces animaux semble être, terme moyen, plus élevée que dans les régions froides. Ainsi les plus grandes espèces des mers du nord sont plus petites que les plus grandes espèces des mers équatoriales ; les petites espèces sont proportionnellement plus nombreuses vers les pôles que vers la ligne, et la taille moyenne de tous ces êtres pris en masse, paraît y être moins élevée. Pour s'en convaincre, il suffit de comparer la Langousté commune, le Homard et le Tourteau, c'est-à-dire les plus gros Crustacés de nos côtes, avec les Langoustes, la Fortune de Tranquebar, le Pseudocarcin géant, et quelques autres Crustacés des mers de l'Inde ; puis de noter le petit nombre de ces animaux qui dans nos mers atteignent une taille moyenne, et de se rappeler la longue série d'espèces remarquables par leur grosseur, qu'on rencontre dans les mers tropicales. Mais ici encore la progression est loin d'être constante, et pour que les différences deviennent bien sensibles, il ne faut pas comparer les régions froides avec les régions tempérées, mais bien avec les mers les plus chaudes du globe.

§ 25. Il semblerait aussi que là où les espèces sont les plus variées, et où le corps atteint ses plus grandes dimensions, c'est-à-dire là où la température est la plus élevée, les particularités de structure qui caractérisent les groupes naturels, sont aussi portées au plus haut degré. Ainsi le développement transversal de la portion céphalo-thoracique du corps, qui donne à tout le groupe des Brachyures un aspect si particulier, est plus grand chez
certain Crustacés des mers équatoriales, que chez aucun de ceux qui habitent nos côtes, où qui se rencontrent plus au nord, et la moyenne de ce développement prise dans toutes les espèces, est indubitablement plus grande dans les mers des régions chaudes. La longueur extrême des pattes et du rostre, qui caractérise la famille des Oxyrhinques et surtout la tribu des Macropodiens, n'est nulle part aussi excessive que chez certaines espèces propres aux mers de l'Inde et des Antilles. Les formes ovoïde des Cancériens, et hexagonale des Portuniens, sont bien plus marquées dans les espèces équatoriales que dans celles des pays froids ou tempérés; et les anomalies que présente le squelette tégumentaire et l'appareil générateur du Catometopes, semblent s'effacer peu-à-peu dans les espèces propres aux mers des régions froides ou même tempérées. Enfin, c'est aussi dans les régions tropicales qu'on rencontre la plupart de ces formes anormales qui donnent à certains animaux de cette classe un aspect si bizarre, les Ranines, les Hippes, les Rémièdes, les Albunées, les Leucifères et les Phyllosomes, par exemple.

Ce résultat me paraît remarquable, et offrira peut-être un nouvel intérêt lorsqu'on se rappellera des observations sur le développement des jeunes Crustacés, que j'ai eu l'honneur de soumettre au jugement de l'Académie il y a quelques années. En effet, nous avons vu alors une tendance analogue déterminée par une autre cause, car nous avons constaté qu'en général, la ressemblance entre les espèces et les genres voisins est d'autant plus grande que le développement du jeune animal est moins complet, et que les changements amenés par les progrès de l'évolution organique tendent essentiellement à éloigner ces êtres du type moyen propre au groupe dont ils font partie, ou, en d'autres mots, à les spécialiser de plus en plus.

§ 26. Enfin, l'étude de la distribution géographique des Crustacés fait apercevoir aussi une coïncidence remarquable entre la température des diverses régions carcinologiques et l'existence ou la prédominance de certaines formes organiques. Ainsi, quoique les Crustacés des Antilles et des mers de l'Inde soient tous ou presque tous d'espèces différentes, ils ont entre eux une analo-
Crustacés.

gie si grande, que les deux faunes offrent le même aspect général et se distinguent facilement de celles appartenant aux régions froides de l'un et de l'autre continent. Ces deux régions tropicales sont habitées par le genre Ocypode, qui se rencontre aussi dans les eaux du Sénégal, mais qui ne se trouve ni sur les côtes de l'Europe, ni dans les parties un peu froides de l'Asie et de l'Amérique; par les Gelasimes, qui se voient également dans tous les pays chauds, mais qui ne dépassent que peu ou point le 35° degré de latitude; par les Grapes et les Sésarmes, qui s'étendent un peu plus loin vers le nord, mais qui ne sont nombreux que dans la zone torride; par les Lupées, qui vers le nord se montrent pour la dernière fois dans la Méditerranée; par des Cyclograpses, des Plagusies, des Pericères, des Carpiles, des Zoymes, des Chlorodies, des Calappes, des Hippes, des Cénobites, des Scyllares, des Ibacus, des Penées, des Squilles, des Limules, et plusieurs autres Crustacés qui habitent exclusivement les régions les plus chaudes du globe, ou ne se montrent qu'en petit nombre et d'une manière pour ainsi dire accidentelle dans les régions froides et tempérées. Cette analogie entre les Crustacés des diverses mers tropicales se retrouve même parmi les espèces de certains genres dont les limites géographiques sont moins restreintes. Ainsi les Langoustes, de la division des Longicornes, habitent les mers de l'Inde et des Antilles; mais les espèces qui les représentent, tant dans les mers d'Europe que sur les côtes du Chili, appartiennent toutes à la division des Langoustes ordinaires; les Palémones les plus remarquables de l'Inde, ressemblent bien plus à ceux des Antilles qu'aux espèces des mers des zones tempérées; enfin, dans ces deux régions tropicales, le nombre relatif des Macropodiens est également petit.

Les régions tempérées ont aussi entre elles des points de ressemblance multipliés. Nous avons déjà vu que le genre Écrevisse leur appartient en propre et se trouve représenté par notre Écrevisse commune dans le nord de l'Ancien-Monde, par l'Astacus Bartonii dans le nord de l'Amérique, par l'Astacus capensis au Cap de Bonne-Espérance, par une quatrième espèce distincte des précédentes au Chili, et par une cinquième à la Nou-
velle-Hollande, mais paraît être presque entièrement exclu de l'espace intermédiaire occupé par la zone torride. Deux espèces distinctes de Homards habitent les deux versans de l'Océan-Atlantique boréal, mais n'y descendent pas au-delà de la ligne tropicale. Le genre Ptalycarcin de Latreille, qui a pour type le Tourteau, si commun sur nos côtes, ne se voit pas dans les régions de l'Inde et des Antilles, mais se retrouve dans les deux hémisphères là où le climat se rapproche davantage du nôtre, savoir, sur les côtes des États-Unis et au Chili. En Europe, aux États-Unis et au Chili, on voit aussi des espèces diverses du genre si remarquable des Callianasses, type dont l'existence n'a encore été signalée dans aucun pays chaud. Les genres Atelécycle et Hyas n'ont encore été trouvés qu'en Europe et au Chili, et le genre Fortune qui peuple nos côtes d'espèces si variées n'a point de représentant ailleurs, si ce n'est dans un point également extra-tropical, de l'hémisphère austral, à la Nouvelle-Hollande. C'est aussi dans les régions froides ou tempérées des deux hémisphères que se trouve presque entièrement confiné le genre si nombreux des Hippolytes, et c'est à des latitudes élevées seulement que les voyageurs ont signalé les légions de Mysis et de Ponties, dont la surface de la mer est quelquefois couverte dans une étendue de plusieurs lieues. Enfin, nous rappellerons encore la ressemblance extrême qui se remarque entre les Lithodes et les Crangons de la Norwège et du Kamtchatka.

L'un des tableaux ci-joints, dans lequel nous avons indiqué le nombre des espèces de chaque groupe naturel de Décapodes ou de Stomapodes dont l'existence a été signalée tant dans les deux régions tropicales les mieux connues (celles de l'Inde et des Antilles) que dans les principales régions tempérées, fera ressortir encore mieux la tendance que nous venons de signaler, car on verra combien il est fréquent de trouver le même genre représenté, dans toutes les mers à-peu-près isothermes, par des espèces variées, tandis que dans les régions dont le climat est très différent, il manque complètement où n'est représenté que par un nombre d'espèces extrêmement restreint. (1)

(1) Voyez le tableau n° 2.
§ 27. D'après les faits que nous venons de passer en revue, on voit que les lois qui semblent présider à la distribution géographique des Crustacés, ont une analogie frappante avec les résultats fournis déjà par l'étude du mode de répartition des végétaux sur la surface du globe, et si l'on comparait maintenant sous le même point de vue les Crustacés et les plantes aux Zoophytes, aux Mollusques, aux Poissons et aux animaux plus élevés qui habitent sur la terre, on apercevrait dans toute la nature vivante les mêmes tendances. Partout on ne peut se rendre compte du mode de distribution des êtres organisés, qu'en supposant l'existence primitive d'un certain nombre de foyers de création épars sur la surface du globe, et la formation dans chacun de ces points, d'un certain nombre d'espèces particulières dont la lignée s'est peu-à-peu étendue au loin. Partout on aperçoit des indices de l'influence de la chaleur, tant sur la première formation de ces êtres, que sur leur dispersion sub-séquente; on voit qu'une température élevée est une des conditions les plus favorables pour la multiplicité des espèces, ainsi que pour la perfection de leur organisation, et on reconnaît l'existence d'un certain rapport entre le climat des diverses régions, et les formes des êtres qui en sont les habitants.

Les règles qui découlent de cette étude n'ont pas, il est vrai, toute la netteté et la constance que l'on se plait à rencontrer dans les sciences exactes; mais il ne faut pas en conclure que les tendances qu'elles indiquent ne sont pas réelles. Des phénomènes de cet ordre sont sous l'empire d'une multitude de circonstances diverses (1), dont les influences se combinent entre

(1) Ainsi une autre circonstance, qui paraît avoir une grande influence sur la dissémination des Crustacés dans certaines localités, est le degré de salure des eaux: c'est probablement la cause qui empêche la plupart de ces animaux de remonter les fleuves, et qui rend leur nombre si faible dans certains mers, telles que la Baltique et la Mer Noire, où la proportion des matières salines ne paraît s'élever guère au-delà du tiers de ce qu'elle est dans les eaux de l'Océan Atlantique. On ne possède pas encore assez de données sur le degré de salure de la mer à des parallèles et à des longitudes différents, pour qu'il soit possible de chercher en ce moment quelle influence cette circonstance peut avoir sur la distribution générale des Crustacés à la surface du globe, mais peut-être contribue-t-elle à déterminer quelques-unes des inégalités qu'on remarque, sous ce rapport, dans des mers à peu-près isothermes: il serait, par exemple, intéressant de savoir si les eaux qui baissent les côtes de l'Inde et l'Archipel d'Asie, ainsi que celles de la Mer-Rouge, sont plus denses que celles des Antilles et des côtes du Brésil, par exemple, .
elles, mais, pour me servir d'un langage algébrique, tantôt avec le même signe, tantôt avec des signes contraires et sans que leurs valeurs relatives nous soient jamais complètement connues. L'observateur ne sait pas les dégager à son gré pour les étudier isolément; il ne voit que la résultante commune de toutes ces forces variables dans leur nombre, dans leur grandeur, dans leurs modifications, et parmi lesquelles il en est même, sans nul doute, plusieurs dont il ignore jusqu'à l'existence. Mais en général un rapport ne se manifeste entre un effet et l'une quelconque des causes qui se combinent pour le produire, qu'autant que cette force se trouve plus ou moins dégagée de l'action des autres, ou qu'elle les domine, et puisque dans la question si compliquée de la distribution géographique des êtres vivans, on voit si fréquemment le résultat général se modifier avec la température, on ne peut se refuser à croire, ce me semble, que la température ne soit en effet une des principales forces régulatrices du phénomène.
N° 1. Tableau de la distribution géographique des Décapodes des mers d'Europe, d'Asie et de l'Amérique orientale.

§ I. MERS D'EUROPE. — Régions Scandinave, Celtique et Méditerranéenne.

BRACHYURES.

Catométopes.

Gecarciniens.

Thelphusiens.

Thelphusa fluvialtilis. ........ Région Méditerranéenne. — Italie, Grèce, Égypte, etc.

Ocypodiens.

Gelasimus taegeri. ........... R. Méditerranéenne. — Détroit de Gibraltar. Rare.

Grapsoidiens.

Grapsus varius. ............... R. Celtique et Méditerranéenne. — Îles Canaries.

Nautilograpsus minus. ....... R. Scandinave (rare), Celtique (rare) et Méditerranéenne.

Egalement dans les mers d'Asie et d'Amérique.

Gonoplaciens.

Gonoplax angulata ........... R. Celtique et Méditerranéenne.

— rhomboides .............. "

Pinnotheriens.

Pinnotheres pisum. ........... "

— Montagui ............... R. Celtique.

— veterrin .............. R. Méditerranéenne.

Cyclometopodes.

Carcerniens.


Pirimela denticulata. ....... R. Celtique et Méditerranéenne.


— spinifer ............... R. Méditerranéenne.

Platycarcinus pagurus. ...... R. Celtique et Méditerranéenne.

Xantho floridus. ............ R. Celtique et Méditerranéenne. — Îles Canaries.

— riviculosus ............. "

Lagostoma perlata. .......... R. Celtique. Rare.

Portuniens.

Carcinus mœnas. .............. R. Scandinave, Celtique et Méditerranéenne.

Portunus phaler. ............. R. Celtique et Méditerranéenne.

— plicatus. ............... "

— maritimus. .............. "

— corrugatus .............. "

— Rondoletii ............. "

— holstius ............... R. Celtique.

— longipes .............. R. Méditerranéenne.

Polybius Henslowii. ........... R. Celtique.

Platynichus latipes. ....... R. Celtique et Méditerranéenne.

— nasutus ............... "

Lupa hastata. .............. R. Méditerranéenne. — Îles Canaries.

Oxybranquins.

Pardéléoniens.

Lambrus angulifrons. ........ R. Méditerranéenne.

— Massena. .............. "

— Mediterraneus. ........ "

Euryxene aspera. .......... R. Celtique.

— Audounii. ............ R. Méditerranéenne.

Maiens.

Acaulonyx lamulatus. ....... "

X. Zool. — Septembre.
Monogrâphie de la faune des îles Canaries. 

1. Malaquinado. 

2. Vermiculosa. 


4. Hyas aranea. 

5. Ile: Chiragra. 

6. Pis: Tetraodon. 

7. Gissii. 

8. Corallina. 


11. Inachus scorpio. 

12. Dorynebus. 

13. Leptorynchus. 

14. Thoracicus. 

15. Amathia Riskoana. 


17. Stenorynehus phalangium. 

18. Longistrostris. 

19. Egyptius. 

20. Laretilla elegans. 


22. Calappiens. 

23. Calappa granulata. 

24. Leucosiens. 

25. Ha: nucleus. 


27. Ebali: Bryerii. 

28. Cranchii. 

29. Pennantii. 

30. Corytistes. 

31. Atelecyclus cruentatus. 

32. Heterodon. 

33. Thia polia. 

34. Coryastes dentatus. 

35. Dorippiens. 

36. Dorippe lanata. 

37. Cymopolia Caronii. 

38. Einsa mascaron. 


40. Apterures. 

41. Dromiens. 

42. Dromia vulgaris. 

43. Homaloi. 

44. Homola spinifrons. 

45. Cuvierii. 

46. Lithodes artica. 

47. Raninienes. 

48. Pterigures. 

49. Hippiens. 

50. Pagurianes. 

51. Pagurus Bernardus. 

52. Pridauxii. 

53. Ocellatus. 

54. Angulatus. 

55. Striatus. 

56. Callidus. 

57. Pictus. 

58. Timidus. 

59. Misanthropus.
des Crustacés.

Pagurus ornatus. R. Méditerranéenne.
— maculatus.

Porcellanencs.
Porcellana platycleus R. Celtique et Méditerranéenne.
— longicornis.

MACROURES.
MACROURES CUIRASSÉS.
Galatheides.
Galathea strigosa R. Celtique.
— rugosa.
— squamifera.

Seyllariens.
Seyllarus arctus R. Méditerranéenne.
— latus. R. Méditerranéenne. — Iles Canaries.

Langoustiens.
Palinurus vulgaris. R. Celtique et Méditerranéenne.

TALIASSIENS.
Cripobranchides.
Callianassa subterranea.
Axia stirychnus. R. Celtique.
Gebia stellata.
— deltura.
— littoralis. R. Méditerranéenne.

Gastrobanchides.
ASTAIENS.
Astacées fluvialis R. Scandinave, Celtique et Méditerranéenne.
— vulgaris.

Nepkrops norvegiens R. Scandinave et Méditerranéenne.

SALICOQUES.
Crangoniens.
Crangon vulgaris. R. Scandinave et Celtique.
— fasciatus.
— catapractus.
— boreas. R. Scandinave. — Mers polaires.
— septemcarinatus.

Alphéens.
Alpheus auber R. Méditerranéenne.
— Edwardsii.
— dentipes.

Pontonia tyrrhena.

Automnea Olivii.

Caridina longirostris.

Nika edulis. R. Celtique et Méditerranéenne.

Athanas nitescens. R. Celtique.

Palémoniens.
Conthophyllus elegans. R. Méditerranéenne.

Hippolyte varians. R. Celtique et Méditerranéenne.
— virescens.
— Brulei.
— Pridaxaioa.
— Moorii.
— crassicornis.
— Cranedi.
— Sowerbii. R. Celtique. — Mers polaires.

Pandalus annulicornis R. Scandinave et Celtique.
— Narwal.

Lysanema seticandata.

Palémon serratus R. Celtique et Méditerranéenne.
— squilla.
— varians. R. Celtique.
Palemon locusta .................................................. R. Celtique.
— antennarius ...................................................... R. Méditerranéenne.
— Treillianus ...................................................... "

Vénêns.

Stenope spinosus .................................................. R. Méditerranéenne. Rare.
Sicyonia sculpta ................................................... R. Méditerranéenne.
Pénéus caramote ................................................... R. Celtique (rare) et Méditerranéenne.
— membranaceus ................................................... R. Méditerranéenne.
— folicaceus ........................................................ "
Ephyra pelagica ................................................... "
— pedunculata ....................................................... "
Pasiphaea sivado ................................................... "

§ II. MERS D'ASIE. — Régions Indienne, Madécasse et Australasienne.

BRACHYURES.

CATOMETOPES.

Gécarciniens.

Oecarcinus lagostoma ............................................ R. Australasienne.
Cardisoma carnifex .............................................. R. Indienne.

Thelplusiens.

Thelphusa indica .................................................. "
— Lechnaudii ........................................................ "
— perlata .............................................................. R. Madécasse.

Ocypodiens.

Ocypode ceraophthalma ........................................... R. Madécasse, Indienne et Australasienne. — Mer Rouge.
— ippeus ............................................................... R. Madécasse et Indienne. — Aussi au Sénégal.
— cordimana ........................................................... R. Madécasse.
— brevicornis ....................................................... R. Indienne.
— Fabricii ............................................................ R. Australasienne.
— maeroaxera ....................................................... R. Indienne et Péruvienne.

Gelasimus tetragonon ............................................ R. Madécasse et Indienne.
— Marionis ........................................................... R. Madécasse, Indienne et Australasienne.
— elodorophthalmus ................................................ R. Madécasse.
— annulipes ........................................................... R. Indienne.
— forceps ............................................................. R. Australasienne.
— cordiformis ....................................................... "

Grapsoidiens.

Sesarma tetragona ................................................... R. Indienne.
— indica ............................................................... "
— quadrata ............................................................. "

Cyclographus punctatus ........................................... "
— Audouinii ........................................................... "
— quadridentatus ................................................ R. Australasienne.
— sexdentatus ....................................................... "
— Gaimardii ........................................................... "
— octodentatus ..................................................... "
— Latreillii ........................................................... R. Madagasse.

Pseudograpsus penicilliger ....................................... R. Indienne.
— pallipes ............................................................. R. Australasienne.

Grapsus strigosus .................................................. R. Madécasse, Indienne et Australasienne.
— messor ............................................................... R. Indienne. — Mer Rouge ; aussi côte septentrionale de l'Afrique et îles Canaries.
— scaber .............................................................. R. Indienne.
— plicatus ............................................................. "
— variacatus ........................................................... R. Australasienne — Chili.

Nautilograpus minus ............................................. R. Madécasse, Indienne et Australasienne. — Aussi dans les mers d'Europe et d'Amérique.
Plagusia tomentosa R. Madécasse et Australasiène. — Chili.
— depressa R. Indienne.
— clavimana R. Australasiène et Indienne.
Varuna littorata R. Indienne.
Macrophthalmus parvimanus R. Madécasse.
— transversus R. Indienne.
— cariani manus «
— depressus «
Cleistotoma Leachii R. Indienne. — Mer Rouge.
Pinnotheriens.
Pinnotheres tridacna R. Indienne.
Elemena Mathaei R. Madécasse et Indienne.
Hymenosoma orbiculare R. Madécasse.
Mictyris longicarpis R. Indienne.
Dato sulcata R. Indienne — Mer Rouge.
Cyclometopbes.
Conceriens.
Melia tessellatus R. Madécasse.
Erithia levimana R. Madécasse, Indienne et Australasiène.
Trapezia ferruginea R. Madécasse et Indienne.
— digitalis R. Madécasse.
— dentifrons R. Australasiène.
Ruppellia tenax R. Indienne.
Pilumnus Vespertilio «
— Peroni «
— Forskalii R. Indienne. — Mer Rouge.
— tomentosus R. Australasiène.
— lanosus «
— fimбриatus «
Etisus dentatus R. Indienne.
— ioequalis «
— anaglyptus R. Australasiène.
Pseudocarcius Rumphii R. Indienne.
— Bellangerii «
— gigas R. Australasiène.
— ocellatus R. Madécasse.
Ozius tuberculatus R. Indienne.
— frontalis «
— truncatus R. Australasiène.
— guttatus «
Chlorolius exaratus R. Indienne.
— niger «
— saugineus R. Madécasse.
— ungulatus R. Australasiène.
— arcotatus «
— eudorus «
Xantheu rufopunctatus R. Madécasse et Indienne.
— Lamarekii R. Madécasse. — Mer Rouge.
— impressus R. Madécasse.
— lividus «
— punctulatus «
— radiatus «
— aspera R. Indienne.
— seaher «
— Reynaudii «
— hirtipes R. Indienne. — Mer Rouge.
— incisus R. Australasiène.
— Peronii «
 — aeneus. .......... R. Indienne.
 — tomentosus. ..........

Carpillus convexus. .......... R. Indienne. — Mer Rouge.
 — maculatus. .......... R. Indienne.

 — marginatus. ..........
 — sculptus. ..........
 — limatus. .......... R. Indienne.
 — Savignii. ..........
 — Oncroë. ..........
 — mammillatus. ..........

Oëthra sculpta. .......... R. Madécasse et Indienne.

Portunien.


 — lobifrons. .......... R. Indienne.
 — gladiator. .......... R. Indienne.

 — Chaptalií. .......... R. Indienne.
 — sima. ..........
 — crenata. ..........
 — annulata. .......... R. Indienne.
 — callianassa. .......... R. Indienne.
 — natator. ..........


Oxythérinques.

Parthénohipiens.

Parthenope horrida. .......... R. Indienne.

Lambrus longimanus. .......... R. Indienne.
 — serratus. ..........
 — presor. ..........
 — carinatus. ..........
 — echinatus. ..........

Cryptopodia formicata.

Maïens.


Halinus aries. .......... R. Indienne.
 — auritus. .......... «


Péricera cornigera. .......... R. Indienne.

 — cristata. .......... R. Indienne.

 — barbicornis. .......... «
 — Gaimardii. .......... «
Chorinus aries R. Indienne.
— aculeatus R. Australasien.
— Dumerilii «
Naxia serpulifera «
Pisa styx R. Madécasse et Indienne.

**Macropodiens.**

Doea avis R. Indienne.
— hybrida «
— muricata «
Egeria indica «
— aracnoides «
— Herbstdii «

**Oxystomes.**

Calappa lophos R. Indienne. — Japon.
— cristata R. Indienne. — Mer Rouge, Cochinchine, Japon.
— fornicate R. Indienne.
— tuberculata R. Madécasse, Indienne et Australasienne
— gallus R. Madécasse.
Matuta victor R. Indienne et Australasienne.
— lunaris «

**Leucosiens.**

Leucosia urania R. Indienne.
— craniolaries «
Oreophorus horridus R. Indienne. — Mer Rouge.
Plylira scabriuscula R. Indienne.
Arcania erinaceus «
Ixa canaliculata R. Madagasse.
Nursia Hardwecki R. Indienne. — Mer Rouge.
Iphias septemspinosa R. Indienne.

**Corysiens.**

Polydeclus cupulifera R. Madécasse.
Nautillocorystes ocellatus R. Madécasse. — Cap de Bonne-Espérance.
Dorippe quadridentata R. Indienne.
— sima «
— astuta «
Caphrya Rouxii «

**ANOMOURES.**

**Artéériens.**

**Dromiens.**

Dromia falax R. Madécasse.
— hirtissima «
— Rumphii R. Indienne.
— caput-mortuum «
— unidentata R. Indienne. — Mer Rouge.
Dynomena hispida R. Madécasse.

**Homoliens.**

Lomis hirta R. Australasien.

**Uranies.**

Ramina dentata R. Madécasse et Indienne.

**Pterygures.**

**Hippiens.**

Albinea synnista R. Indienne.
— scutellata «
Hippa asiatica «
Remipes testudinarius R. Australasien.

**Pagurien.**

Sirus latro R. Indienne.
Genubita clypeata «
— rugosa «
— Duperrei.

Scyllariens.
Scyllarurus rugosus. .......... R. Indienne.
Thenus orientalis. .......... R. Indienne.

Porcellana Lamarckii.

Graham.
·

M. Guirassès.

Galathéides.

Thalassines.

Cryptobranchides.
Glaucothoe Peronii. .......... R. Indienne.

Gastrobranchides.
Callianide type. .......... R. Indienne.

Astaciens.

Salicoques.

Crangoniens.
Alpheus.

Hymenoera typa. .......... R. Indienne.
Alpheus ventricosus.
— bidens. .......... R. Indienne.

Pontonia macrophthalma. .......... R. Indienne.
— armata. .......... R. Indienne.
Portunia illata ........................................... R. Indienne.
Caridina typus .......................................... R. Madécassee.
Palaemoniens.
Hippolyte Quoyanus ................................... R. Indienne.
— ventricosus ........................................... "
— spinifrons .......................................... R. Australasienne.
— spinicaudatus ...................................... "
— gibbosus ........................................... "
— marmoratus ......................................... "
— serratus ............................................ "
Rhynchocinetes typus ................................ R. Indienne.
Palaemon natator ....................................... "
— longirostris ........................................ "
— carcinus ........................................... "
— ornatus ........................................... "
— Lamarrei ........................................... "
— Quoyanus ........................................... R. Australasienne.
— hirtimanus ......................................... R. Madécassse.
Pénéens.
Stenope hispidus ........................................ R. Indienne (aussi dans les mers d'Amérique).
Penœus canaliculatus ................................ R. Madécassse et Indienne.
— monoceros .......................................... R. Indienne.
— indicus ............................................ "
— mouodon ........................................... "
— affinis ............................................ "
— brevicornis ........................................ "
— planicornis ......................................... "
— erasiconris ......................................... "
— styliferus .......................................... "
Oplophorus typus ....................................... "
Acetes indicus .......................................... "

§ III. MERS D'AMÉRIQUE.— Régions Polaire, Pensylvaniennn et Caraïbe.

BRACHYURES.

CATOMÉTOPES.

Gécarciniens

Gecarcinus ruricola .................................... R. Caraïbe.
— lateralis ........................................... "
Gecareoidea Lalandeï ................................ "
Cardisona Guan humili ................................ "
Uca una .............................................. "
— lavis .............................................. "
Thelplusiens .......................................... "
Potamia dentata ....................................... "
Tricodactylus quadrata ................................ "
Octypodiens .......................................... "

Ocyypoda arenaria ...................................... R. Caraïbe et sud de la région Pensylvaniennn.
— rhombca ............................................ R. Caraïbe.
Gelasimus maraeoni ..................................... "
— platydaetlylus .................................... "
— vocans ............................................ R. Caraïbe et Pensylvaniennn.
Scsarma cinerea ......................................... R. Caraïbe.
— Pisonii ............................................ "
Cyclograpsus integer ................................... "
Grapsus cruentatus ..................................... "
— lividus ............................................. "
— pictus ............................................. "
Nautilograpsus minus

Plugusia depressa (Say).

Gonapletiens.

Pinnothériens.

Pinnotherus ostreum.

Cyclometopes.

Canceriens.

Eriphia gonagra.

Pilumnus Quoili.

— aculeatus.

Platycarcinus irritatus.

Panopens Herbsti.

— limosus.

Chlorodius niger.

Xantho parvulus.

— setiger.

— mercedaria.

Carpillus corallinus.

Portaniens.

Platyonichus ocellatus.

Lupa diceantha.

— cribarlia.

— spinimana.

— rubra.

— Saebe.

— forceps.

— maculata.

OXYRHINQUES.

Parthenopiens.

Maiens.

Acanthonyx Petiverii.

Pericere cornuta.

— trispinosa.

— bicornia.

— heptacantha.

Mithrax spinosissimus.

— aculeatus.

— verrucosus.

— hspidus.

— sculptus.

Chorinus heros.

Hyas aranca.

Lissa fissirostris.

Libinia canaliculata.

— dubia.

— spinosa.

Macropodens.

Eurypodius Latreilli.

Leptopodia sagittaria.

— calcarata.

OYSTROSTOMES.

Calappiens.

Calappa marmorata.

Hepates fasciatus.

Leucosiens.

Guania punctata.

Corystiens.

Porippiens.
des Crustacés.

**ANOMOURES.**

**APTIVURES.**

*Dromiens.*

*Dromia latar.*.......... R. Caraïbe.

**PTEGURES.**

*Hippiens.*

*Hippa enestira.*.......... R. Caraïbe.

*Paguriens.*

*Pagurus granulatus.*........
  — tuberferosus. 
  — sulcatus. 
  — longicarpus. R. Pensylvanienne.
  — plicaris. 
  — vittatus. 

*Porcelaniens.*

*Porcellana galathina.*...... R. Caraïbe et Pensylvanienne.
  — pilosa. R. Pensylvanienne.
  — sociata. 

**MACROURES.**

**M. Cuirassees.**

*Galatheides.*

*Scyllariens.*

*Scyllarum equinoxialis.*..... R. Caraïbe.

*Langoustiens.*

*Palinurus longimanus.*......
  — guttatus. 
  — Americanus. 
  — Argus. 

**THALASSIENIENS.**

*Cryptobranchides.*

*Callianassa uncinata.*...... R. Pensylvanienne.

*Gebia affinis.*............

*Gastrobranchides.*

**ASTACIERS.**

*Astacens Bartonii.*......... R. Pensylvanienne.
  — affinis. 
  — americanus. 

**SALICOQUES.**

*Crangonien.*

*Crangon boreas.*........... R. Polaire.
  — septemcarinatus. 

*Alphéens.*

*Alpheus heterolecheles.*..... R. Pensylvanienne.
  — minus. 
  — armillatus. R. Caraïbe.

*Palémoniens.*

*Hippolyte borealis.*....... R. Polaire.
  — polaris. 
  — aculeatus. 

*Palémon tenuirostris.*..... R. Pensylvanienne et Polaire.
  — forreps. 
  — jamaicensis. 
  — spinimanus. 
  — vulgaris. R. Pensylvanienne.

*Penaeas.*

*Stenope hispidus.*........... R. Caraïbe — aussi dans les mers d’Europe.

*Penaeus brasiliensis.*..... R. Caraïbe.
  — setiferus. R. Pensylvanienne.
N° II. Tableau du mode de répartition des divers genres de Crustacés Décapodes dans les régions tropicales et tempérées.

<table>
<thead>
<tr>
<th>TRIBUS ou GENRES.</th>
<th>NOMBRE DES ESPÈCES QUI SE TROUVENT DANS LA RÉGION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gecarcinien</td>
<td>2</td>
</tr>
<tr>
<td>Thelphusiens</td>
<td>2</td>
</tr>
<tr>
<td>Ocypode</td>
<td>4</td>
</tr>
<tr>
<td>Gelasime</td>
<td>3</td>
</tr>
<tr>
<td>Sésarmes</td>
<td>3</td>
</tr>
<tr>
<td>Cylographe</td>
<td>2</td>
</tr>
<tr>
<td>Pseudographe</td>
<td>1</td>
</tr>
<tr>
<td>Graphe</td>
<td>4</td>
</tr>
<tr>
<td>Plagusie</td>
<td>2</td>
</tr>
<tr>
<td>Varune</td>
<td>1</td>
</tr>
<tr>
<td>Gonoplace</td>
<td>0</td>
</tr>
<tr>
<td>Macrophthalmum</td>
<td>3</td>
</tr>
<tr>
<td>Cleistotome</td>
<td>1</td>
</tr>
<tr>
<td>Pinnothère</td>
<td>1</td>
</tr>
<tr>
<td>Elamène</td>
<td>1</td>
</tr>
<tr>
<td>Mictyre</td>
<td>1</td>
</tr>
<tr>
<td>Trapèze</td>
<td>1</td>
</tr>
<tr>
<td>Eriphie</td>
<td>1</td>
</tr>
<tr>
<td>Pirimele</td>
<td>0</td>
</tr>
<tr>
<td>Pilumne</td>
<td>3</td>
</tr>
<tr>
<td>Ptilycarcin</td>
<td>0</td>
</tr>
<tr>
<td>Etise</td>
<td>2</td>
</tr>
<tr>
<td>Pseudocarcin</td>
<td>2</td>
</tr>
<tr>
<td>Ozie</td>
<td>2</td>
</tr>
<tr>
<td>Panope</td>
<td>0</td>
</tr>
<tr>
<td>Chlorodice</td>
<td>2</td>
</tr>
<tr>
<td>Xanthe</td>
<td>6</td>
</tr>
<tr>
<td>Zooyme</td>
<td>2</td>
</tr>
<tr>
<td>Carpille</td>
<td>2</td>
</tr>
<tr>
<td>Crabe p. d.</td>
<td>7</td>
</tr>
<tr>
<td>O'Ethic</td>
<td>1</td>
</tr>
<tr>
<td>Carcin</td>
<td>0</td>
</tr>
<tr>
<td>Fortune</td>
<td>0</td>
</tr>
<tr>
<td>Polybie</td>
<td>0</td>
</tr>
<tr>
<td>Platygonique</td>
<td>0</td>
</tr>
<tr>
<td>Lupée</td>
<td>5</td>
</tr>
<tr>
<td>Thalamite</td>
<td>9</td>
</tr>
<tr>
<td>Podophthaline</td>
<td>1</td>
</tr>
<tr>
<td>TRIBUS</td>
<td>NOMBRE DES ESPÈCES QUI SE TROUVENT DANS LA</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------------------</td>
</tr>
<tr>
<td>Parthenope</td>
<td>1</td>
</tr>
<tr>
<td>Lambre</td>
<td>5</td>
</tr>
<tr>
<td>Eurynome</td>
<td>0</td>
</tr>
<tr>
<td>Cryptopodie</td>
<td>1</td>
</tr>
<tr>
<td>Leucippe</td>
<td>0</td>
</tr>
<tr>
<td>Épialte</td>
<td>0</td>
</tr>
<tr>
<td>Acanthonyx</td>
<td>0</td>
</tr>
<tr>
<td>Halimes</td>
<td>2</td>
</tr>
<tr>
<td>Menocthe</td>
<td>1</td>
</tr>
<tr>
<td>Perciere</td>
<td>1</td>
</tr>
<tr>
<td>Paramicpeppe</td>
<td>1</td>
</tr>
<tr>
<td>Micippe</td>
<td>2</td>
</tr>
<tr>
<td>Maia</td>
<td>0</td>
</tr>
<tr>
<td>Mithrax</td>
<td>0</td>
</tr>
<tr>
<td>Chorine</td>
<td>1</td>
</tr>
<tr>
<td>Hyas</td>
<td>0</td>
</tr>
<tr>
<td>Pise</td>
<td>1</td>
</tr>
<tr>
<td>Libinie</td>
<td>0</td>
</tr>
<tr>
<td>Doélée</td>
<td>3</td>
</tr>
<tr>
<td>Egerie</td>
<td>3</td>
</tr>
<tr>
<td>Inachus</td>
<td>0</td>
</tr>
<tr>
<td>Cephalius</td>
<td>0</td>
</tr>
<tr>
<td>Eurypode</td>
<td>0</td>
</tr>
<tr>
<td>Sterorrhynque</td>
<td>0</td>
</tr>
<tr>
<td>Leptopodie</td>
<td>0</td>
</tr>
<tr>
<td>Calappe</td>
<td>4</td>
</tr>
<tr>
<td>Platymère</td>
<td>0</td>
</tr>
<tr>
<td>Matute</td>
<td>2</td>
</tr>
<tr>
<td>Hepate</td>
<td>0</td>
</tr>
<tr>
<td>Lencosic</td>
<td>2</td>
</tr>
<tr>
<td>Ilia</td>
<td>0</td>
</tr>
<tr>
<td>Myra</td>
<td>1</td>
</tr>
<tr>
<td>Guaià</td>
<td>0</td>
</tr>
<tr>
<td>Ebalie</td>
<td>0</td>
</tr>
<tr>
<td>Philira</td>
<td>1</td>
</tr>
<tr>
<td>Arcanie</td>
<td>1</td>
</tr>
<tr>
<td>Nursie</td>
<td>1</td>
</tr>
<tr>
<td>Iphis</td>
<td>1</td>
</tr>
<tr>
<td>Atélecye</td>
<td>0</td>
</tr>
<tr>
<td>Thie</td>
<td>0</td>
</tr>
<tr>
<td>Corystiens</td>
<td>0</td>
</tr>
<tr>
<td>Doripiens</td>
<td>4</td>
</tr>
<tr>
<td>Dromiens</td>
<td>3</td>
</tr>
</tbody>
</table>
### Table: NOMBRE DES ESPÈCES QUI SE TROUVENT DANS LA RÉGION

<table>
<thead>
<tr>
<th>TRIBUS</th>
<th>Région Indienne</th>
<th>Région Caraïbe</th>
<th>Région Celtique</th>
<th>Région Pensylvan</th>
<th>Région Chiliéenne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homoles</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hanine</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hippiens</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Birgus</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pagure</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Cénobite</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Porcellane</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Aéglée</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Calamite</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Langouste</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Glaucothoe</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Calianasse</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Axic</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gebie</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Callianide</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Astaciens</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Crangon</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alphee</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Atye</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hymenocere</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pontome</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nika</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Athanase</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hippolyte</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rhynochocinète</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pandalus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Palemon</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Penée</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stenope</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oplophore</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Acète</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mysis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cynthie</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Leucifère</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Phyllosome</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Amphion</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Erichthiens</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Squilliens</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Mémoire sur un ver parasite constituant un nouveau genre voisin des Rotifères, sur le Tardigrade et sur les Systolides ou Rotateurs en général,

Par M. F. Dujardin.

I.

Pendant que je m'occupais à recueillir des observations sur divers Rotateurs, j'ai été assez heureux pour rencontrer un nouveau type de cette classe de vers, lequel n'est pas moins remarquable par son habitation à l'intérieur du corps des Lombrics et des Limaces, que par son organisation. C'est un Helminthe offrant en partie les caractères généraux des Furculaires et des Rotifères, ou plutôt, c'est un nouveau type servant de lien commun entre les deux classes de vers qu'on peut nommer les Helminthides et les Systolides.

L'Albertia vermiculus (c'est ainsi que je propose de le nommer) a la forme d'un petit ver contractile, tout uni à l'extérieur, arrondi en avant, atténué et terminé en pointe mousse à l'extrémité postérieure, mais d'ailleurs presque de même grossesse dans toute sa longueur, qui égale au moins sept fois son diamètre quand il est étendu ; quand au contraire il se contracte, il montre quelques plis irréguliers, et la partie postérieure présente même un peu l'apparence d'une queue articulée. Sa longueur totale n'est guère au-dessous d'un tiers de millimètre, et quelquefois elle en dépasse la moitié (0,55). Il est vivipare, et les plus grands fœtus qu'on voit à l'intérieur, repliés deux fois sur eux-mêmes, ont déjà les deux tiers de la longueur des adultes, et n'en diffèrent que parce qu'ils sont bien plus minces, et que leur ovaire, peu développé, laisse voir distinctement l'intestin dans tout son trajet.

La partie antérieure change fréquemment de forme : tantôt elle ne montre qu'un contour également arrondi ou légèrement
sinueux sur les côtés seulement (Pl. 2, fig. 1); on ne distingue dans ce qui paraît former la tête que deux globules moins transparents près du bord, lesquels on pourrait prendre pour des yeux si l'on ne s'assurait, par les mouvements ultérieurs de l'animal, que ce sont deux faisceaux musculaires vus perpendiculairement; un peu plus en arrière, on voit aussi l'apparence de cils repliés, immobiles. Tantôt un prolongement circulaire, trois fois moins large que la tête, se montre en avant comme un chaperon frontal, et les deux globules ronds qu'on avait vus précédemment près du bord se changent en deux cordons d'abord infléchis et sinueux, puis droits et étendus longitudinallement quand le chaperon est entièrement étendu. Les cils ne paraissent pas encore, mais ils ne tardent pas à se montrer quand le chaperon est développé. On voit d'abord une expansion circulaire bordée de cils couvrant seulement le chaperon, puis le bord latéral venant à se renverser sur toute sa largeur, la tête entière paraît bordée de cils vibratiles, mais ce n'est point un organe simple ou multiple analogue à ceux des Mélicertes, des Brachions et des Rotifères, c'est une expansion ciliée, aussi simple qu'on la rencontre chez certains Furculaires; quand ensuite l'animal commence à retirer ses expansions ciliées, quand il contracte ses mandibules, la partie centrale se retire tout à-la-fois plus que les deux côtés, qui forment, comme on le voit dans la fig. 2, pl. 2, une saillie circulaire de chaque côté de la partie centrale ciliée que ne dépasse plus le chaperon.

En arrière du bord frontal, à une distance variable entre un diamètre du corps et le tiers de cette largeur, se trouve l'appareil mandibulaire qui, avec ses accessoires et sa masse musculaire, a tout au plus le dixième de la longueur du corps et la moitié de sa largeur; cet appareil se meut d'arrière en avant, en même temps que le bord frontal se déploie comme il a été dit. Dans la position que représentent les figures 1 et 3, il est en repos et aussi reculé que possible; quand le chaperon se déploie et que l'ouverture buccale se trouve conséquemment libre, les mandibules s'avancent en s'écartant à la manière d'une tenaille, ainsi qu'on le voit aussi dans les Eumolpes et les autres Annelides à fortes mandibules; quand la nourriture a été saisie,
par les mandibules, leurs pointes se rapprochent en se portant en arrière comme dans la figure 2; alors aussi le centre de l'expansion ciliée se retire un peu, ainsi que tout le pharynx.

Les mandibules (fig. 3), comme chez beaucoup de Rotateurs, sont formées chacune de deux pièces articulées: l'une antérieure plus courte, plus ferme, un peu crochue, est la pointe (acies), et sert à saisir la proie; l'autre, postérieure, plus longue, donne attache à deux muscles particuliers, l'un en dehors, abducteur, l'autre en dedans, adducteur, au moyen desquels les mandibules sont écartées ou rapprochées; cette dernière pièce peut être nommée le fût (scapus); aux mandibules est annexé, pour produire en outre le mouvement de flexion de la pointe sur l'articulation du fût, un appareil également corné qui peut être nommé support (fulcrum), et se compose d'une tige centrale et de deux branches: la tige est courte et peu visible ici, où elle s'insère avec les deux fûts au même point de la masse charnue, mais elle est longue et très visible dans la Vorticella aurita Müller (Notommata Ehr.), dans le Digilena grandis et surtout dans le Mastigocerca carinata Ehr. Les branches qui s'articulent, d'une part à l'extrémité de la tige, et d'autre part au tiers antérieur de la pointe des mandibules, sont deux lames arquées, falciformes ou en croissant. Le support, en s'avancant ou se reculant, indépendamment du mouvement des mandibules, fait jouer la pointe de celles-ci comme des leviers du troisième genre, dont le point d'appui est leur articulation avec le fût. Tout cet appareil est assis sur une masse charnue arrondie postérieurement (fig. 1, 2 r), et qui, par sa contractilité, paraît toute musculée, quoiqu'on n'y distingue ni fibres, ni faisceaux; seulement il s'y produit spontanément, comme dans toutes les masses charnues des animaux inférieurs, des cavités sphériques ou vacuoles remplies d'eau, qui disparaissent plus ou moins promptement sans laisser de traces, pour être plus tard remplacées par d'autres. De cette masse charnue part l'intestin, qui d'abord aussi large, va en diminuant jusqu'à l'anus (fig. 2 q) situé au-dessus de la queue, et distant de l'extrémité d'une longueur un peu moindre que le diamètre du corps. De chaque
côté, près de son origine, l'intestin porte deux corps pédicellés en forme de sac (fig. 1 et 2 d, c), l'un antérieur (d) beaucoup plus volumineux et presque aussi long que l'appareil mandibulaire ; l'autre (c) plus court, réniforme, montrant bien son embouchure dans l'intestin par un tube court et épais. Ces sacs doivent être analogues aux appendices reconnus par M. Ehrenberg chez beaucoup de Rotateurs à l'origine de l'intestin, et regardés par lui comme des corps glanduleux ou des pancréas. Cependant les organes en question sont ici susceptibles de se contracter considérablement en faisant refluer dans l'intestin leur contenu, qui les remplit de nouveau quand ils se dilatent bientôt après comme chez les Ilirudinés et les Aphróïlites : ce pourraient donc être des cœcums ou des estomacs accessoires, et, dans ce cas, nous aurions ici de vrais polygastriques, tandis que les Infusoraires auxquels on a voulu donner ce nom le mériterait beaucoup moins. J'ai vu d'ailleurs aussi des vacuoles dans ces organes.

L'ovaire a la forme d'un sac oblong simple, remontant le long de l'intestin jusqu'au-dessus de l'insertion des sacs stomacaux postérieurs. Chez les individus jeunes, on n'y voit qu'une substance demi transparente, irrégulièrement granulée, avec six ou sept vésicules diaphanes. Plus tard, les œufs se montrent distinctement avec leur enveloppe; il est rare alors qu'on en voie plus de quatre, et encore ceux qui sont plus près de l'orifice externe sont déjà occupés par des fœtus reconnaissables : enfin, dans les individus les plus gros, on voit toujours, outre les œufs, des fœtus plus ou moins complètement développés, comme chez le Rotifère ; on y distingue surtout les mandibules, le mouvement des cils.

J'ai vu distinctement, dans l'Albertia, la vessie contractile reconnue par M. Ehrenberg chez tous les Rotateurs, mais je ne puis la prendre, comme lui, pour une vésicule séminale ou pour un organe d'éjaculation. Quelle probabilité trouverait-on, en effet, à ce que chez un animal n'ayant à pondre que huit ou dix œufs à peine dans tout le cours de sa vie, il y eût éjaculation aussi copieuse des milliers de fois ? Rien n'est impossible à la nature assurément ; mais si elle ne se montre pas avare pour la
voisin des Rotifères.

variété des formes, elle l’est beaucoup au contraire pour les moyens qu’elle emploie.

S’il fallait absolument donner une signification à tous les organes des animaux qui offrent si peu d’analogie réelle avec ce que nous connaissons, j’aimerais mieux regarder celui-ci comme un organe respiratoire. Cependant l’*Albertia* présente en outre dans l’intérieur de sa cavité abdominale des organes particuliers (fig. 1 a a) qui semblent propres à cette même fonction : y aurait-il connexion entre la vessie contractile et les organes vibratiles de l’intérieur, pour le renouvellement du liquide propre à la respiration ? C’est ce qu’on ne peut que conjecturer.

Les organes intérieurs dont je veux parler (*a, a*) sont quatre paires de filaments ondulatoires situées de chaque côté à des distances égales, savoir, la première paire un peu en arrière des sacs stomacaux postérieurs, la dernière en avant de la vessie contractile, et les deux moyennes également espacées entre celles-là. Ces filaments, épais de \( \frac{1}{4} \) mill. et longs de \( \frac{1}{2} \) mill. environ, sont agités d’un mouvement ondulatoire continu, assez vif, et dirigé toujours dans le même sens (indiqué par les flèches sur la fig. 1) ; le plus souvent les deux paires postérieures ont leur mouvement dirigé d’arrière en avant, et les deux autres ont un mouvement inverse ; mais cette disposition n’est pas constante ; chaque filament ondulatoire paraît retenu par un cordon droit de même longueur, qui est fixé parallèlement au tegument.

J’ai trouvé pour la première fois l’*Albertia* le 31 mars 1838, dans le liquide obtenu par des incisions latérales faites à de petits Lombrics de mon jardin ; j’avais soin, en faisant ces incisions, de ne pas entamer l’intestin, de sorte que j’étais certain d’avoir pris le parasite dans la cavité abdominale du Lombric. Je l’ai retrouvé ultérieurement de la même manière en nombre assez considérable, et enfin vers la fin d’avril, je l’ai trouvé aussi très abondamment dans l’intestin même de la *Limax agrestis*, qui vit dans le même lieu.

Si l’on compare les caractères que je viens d’exposer à ceux des Rotateurs déjà connus et particulièrement décrits par M. Ehrenberg, on reconnaîtra que l’*Albertia* constitue un type
parfaitement distinct, 1° à cause de sa forme allongée qui ne se
voit que chez les Rotifères, lesquels ont une queue appendicu-
lée rétractile, et sont plus amincis aux deux extrémités quand
ils s'allongent, et surtout bien plus contractiles; 2° par sa queue
simple, en pointe conoïde, mousse, ce qui ne s'observe tout
au plus que chez le Glenophora Ehr., si différent d'ailleurs par
sa forme courte et conique, tandis que tous les autres ont à la
partie postérieure, ou une ventouse pour se fixer, ou des ap-
pendices plus ou moins prononcés; 3° par son appareil mandi-
dulaire, analogue seulement à ceux des diglena, dont le corps,
plus court, est entouré d'un tégument lâche, plissé, et dont la
queue est bifurquée; 4° enfin par ses organes respiratoires in-
térieurs, qui diffèrent totalement de ceux que M. Ehrenberg a
décrits chez les notom mata, megalotrocha, etc.

On pourrait, je crois, poser ainsi les caractères générales de
l'Albertia :

Animal vermiforme , contractile , nudum , mandibulatum ,
anticé sub-truncatum , cucullo frontali mox prominulo , ore-
que ciliato mox expanso munitum , postice attenuatum , caudâ
brevi , conica terminatum.

Les caractères spécifiques seraient fournis par les appendices
de l'estomac, par les mandibules et par la viviparité; tandis
que les caractères généraux tirés de l'organisation lui seraient
commun avec ceux d'une même famille.

Voilà ce que mes premières observations m'ont fait connaître
sur ce type curieux : on pourra bien me reprocher d'avoir laissé
ma description incomplète en ne mentionnant pas même les
testicules, les nerfs, les vaisseaux et tous les autres organes mi-
nutieusement décrits par le savant micrographe de Berlin; je
crois bien qu'on peut voir plus que je n'ai vu; j'espère même
que mes recherches ultérieures me feront mieux distinguer ce
que je n'ai fait qu'apercevoir; cependant je ne crois pas pouvoir
parvenir à y découvrir les organes décrits par M. Ehrenberg,
et que j'ai vainement cherchés, non-seulement dans cette es-
pèce, mais même dans cette fameuse Hydatina qu'il a prise
pour type.
Pour faire connaître la cause de mes doutes, je vais présenter une exposition rapide de nos connaissances réelles sur la classe des Rotateurs, après que j'aurai préalablement dit quelques mots du Tardigrade de Spallanzani.

Cet animal microscopique, long de 1/4 à 1/2 millim., paraît avoir été vu d'abord en 1767 par Eichhorn (1), qui lui donna le nom significatif de Wasserbar (Ours d'eau). Dans ses mouvements, en effet, et surtout quand il se montre de profil, il rappelle assez bien l'idée d'un ours qui se dresse sur ses pattes de derrière ou qui cherche à grimper. Eichhorn, qui l'avait trouvé dans une eau gardée long-temps avec des herbes, en donna une figure très imparfaite en représentant l'animal avec dix pieds au lieu de huit, et n'indiquant ni les intestins, ni les mandibules, etc.

Corti, en 1774, qui le nomma Brucolino, le trouva dans le sable des toits, et l'étudia particulièrement sous le rapport de sa résurrection après qu'il a été desséché avec le sable (2); c'est sous ce rapport aussi que Spallanzani (3) l'observa avec soin en 1776, en même temps que ses Rotifères, qu'il trouvait comme lui, mais bien plus communément, dans le sable des toits et des gouttières : il lui donna le nom de Tardigrade, à cause de sa démarche lourde et de ses mouvements assez gauches. Malheureusement, il le représenta, on ne peut plus mal, dans ses planches, et n'indiqua aucunement son organisation.

Schrank, dans sa Fauna Boica, 1804, décrivit le même animal, qu'il avait bien vu, et le nomma Arctison (du mot grec Arctos, ours); mais ce nom fut entièrement oublié, jusqu'à ce que M. Nitzsch en 1835, dans les Archives de Wiegman (4), le rappela en décrivant comme deux espèces le même animal qui en 1833 et 1834 venait de recevoir deux noms différents, savoir,

(1) Beytrage zur naturgeschichte der kleinsten Wasserthiere, 1781, pl. vth.
(2) Opere microscopiche.
(3) Opuscles de physique, traduits par Sennebier; tome II, p.
le nom de *Macrobiotus Hufelandii* par M. Schultze de Grieswald (1), et celui de *Trionychium tardigradum* par M. Ehrenberg.

Les observations de M. Schultze, communiquées à la réunion des naturalistes allemands à Breslau, furent particulièrement importantes, parce qu’elles mirent hors de doute la vérité des expériences de Spallanzani sur la résurrection des Rotifères et des Tardigrades desséchés dans le sable : vérifiées par beaucoup d’autres naturalistes à cette époque, elles permirent de croire sans réserve que ces animaux peuvent éprouver durant plusieurs années une suspension de la vie, qui prolonge par le fait la durée de leur existence bien au-delà de ses limites naturelles. La description et la figure du Tardigrade ou *Macrobiotus*, données dans l’*Isis* par M. Schultze, furent les plus exactes qu’on eût encore eues ; mais l’auteur se trompa sur la signification de plusieurs parties, et voulut peut-être trop considérer à priori son animal comme appartenant à la classe des Crustacés ; conséquemment, il le crut voir bien plus réellement articulé qu’il n’est en effet : il prit pour une circulation du sang le refoulement des granules contenus librement dans l’intérieur du corps, et mus irrégulièrement par suite des contractions. Il paraît s’être mépris sur ce qu’il nomme des œufs, ou du moins il n’a pas vu les œufs mûrs ; et enfin, voulant interpréter l’appareil mandibulaire, il appelle œsophage la réunion antérieure des quatre tiges des mandibules et du support, et veut trouver trois paires de dents dans les articles de la base du support, au milieu de la masse charnue globuleuse du pharynx.

La caractéristique du genre *Macrobiotus*, donnée par M. Schultze, est la suivante : « Corpus elongatum, depresso cylindricum, in decem segmenta distinctum. Pedes octo, alternis segmentis à quarto ad decimum affixi. Caput antennis destitutum, oculi duo ». Ainsi, pour en faire des Crustacés, on est forcé de reconnaître que ces animaux n’ont pas d’appendices articulés.

M. Ehrenberg, qui de son côté crut reconnaître une très
grande affinité entre eux et les Lernées, se méprit aussi sur plusieurs détails de leur organisation, notamment sur leurs ongles, qu'il dit être au nombre de trois à chaque pied, et d'où il a même tiré leur nom générique *trionychium* ; mais il avait, en général, mieux vu que M. Schultze : il signala l'analogie de leur canal intestinal avec celui des Rotateurs, sauf, dit-il, l'absence des deux glandes stomacales, et surtout il fit une observation fort curieuse sur la ponte de leurs œufs, car il vit les Tardigrades se dépouiller eux-mêmes de leur propre peau, qui reste comme une enveloppe ou un sac renfermant des œufs gros de 1/36" (1/16 millim.). Il m'est bien arrivé à moi-même de voir des peaux de Tardigrade ne contenant rien autre chose que des gros œufs, mais je n'ai pas vu ces animaux effectuer à-la-fois leur mue et leur ponte. C'est leur volume si considérable qui m'a fait dire précédemment que M. Schultze n'a pas représenté les véritables œufs dans la planche de l'*Isis*.

Le Tardigrade, par le volume de ses œufs, par la période si peu considérable de son développement, de 1/10 à 1/2 mill., et surtout par la simplicité de son appareil digestif, en même temps que par son appareil mandibulaire, m'a paru se rapprocher bien plus des Rotateurs que des Crustacés. D'un autre côté, ses ongles cornés, bi-mucronés (pl. 2, fig. 7) rappellent tout-à-fait les crochets de certaines Annelides. De sorte que, adoptant l'idée de M. Milne Edwards, qui veut placer les Rotateurs dans une division générale des Vers avec les Annelides et les Helminthes, on verrait dans le Tardigrade le passage des Rotateurs aux Annelides à mandibules césophagiennes et à celles à soies en crochet ; tandis que l'*Albertia*, que j'ai décrit plus haut, établirait le passage de cette même classe aux Helminthes par les Nematoïdes dont il a presque la forme extérieure, et par les Pentastomes, dont les crochets, comme je le montrerai plus tard, ont tant de rapport avec les mandibules de certains Rotateurs.

C'est bien à tort que M. Schultze a représenté le Tardigrade comme articulé, car son enveloppe extérieure, irrégulièrement gousée, présente seulement des rides plus ou moins nombreuses dans la flexion et la contraction du corps. Les pieds
eux-mêmes ne sont pas articulés : ce sont des tubercules saillans, formés par le prolongement de la peau, analogues tout au plus aux tubercules servant à la progression des larves de Syrphes, et qui, comme on sait, ne sont nullement des pieds. L’appareil mandibulaire, quoique différant beaucoup, au premier aspect, de celui des Rotateurs, n’est pas sans quelque analogie avec celui de certains Diglena et Notomnata, chez lesquels les pointes tendent à former saillie au milieu de l’ouverture buccale. Les deux pièces latérales, avec leurs deux apophyses basilaires, auxquelles s’attache un cordon musculaire qui les rapproche, sont les mandibules proprement dites. Les pièces centrales constituent le support (fulcrum), qui, s’avançant et se reculant, détermine l’écartement et le rapprochement des mandibules. La base de ce support, logée au milieu d’une masse musculaire globuleuse et radiée, présente deux séries de deux pièces articulées, correspondant à chacune des deux tiges. J’avoue que je n’ai pu me rendre raison de cette articulation, dont la mobilité est peu sensible; mais, à coup sûr, par cette dernière raison, ce ne sont pas des dents, comme le pense M. Schultze; non plus que la réunion des tiges, du support et des mandibules n’est un œsophage. Le mouvement relatif de chaque pièce est peu considérable; les mandibules s’écartent un peu en avançant leurs pointes quand leurs bases se rapprochent, en tournant autour de l’axe commun du système, mais non comme les branches d’une paire de ciseaux. Le mouvement général de l’appareil est, au contraire, assez étendu; quand il s’avance tout entier, les mandibules se prolongent un peu et viennent aboutir à l’extrémité d’une sorte de trompe courte, percée d’un orifice rond très étroit (pl. 2, fig. 5). Quand il se retire, les tégumens se retournent à l’intérieur comme un doigt de gant, et, au lieu d’une trompe, on a une large ouverture en entonnoir (pl. 2, fig. 4); mais, alors, la mastication ne s’effectue pas. C’est donc encore l’analogue du mouvement de la trompe et de l’armure œsophagienne de certains Annelides et Helminthes.

Les deux points noirs qu’on aperçoit de chaque côté des mandibules sont intérieurs et paraissent sans organisation, et même
sans forme distincte. Ce sont de simples taches, comme celles de la tête des Planaires, mais on a tout autant de motifs pour les regarder comme des yeux que les taches rouges des rotateurs. Plusieurs fois, j’ai vu une troisième tache médiane très peu marquée, près du bord antérieur. La substance charnue intérieure ne forme pas de fibres ou de faisceaux distincts, comme dans les articulés; bien loin de là, elle paraît molle, visqueuse ou demi liquide et refle d’une extrémité à l’autre, quand l’animal se meut. Les granules contenus à l’intérieur se trouvant alors entrainés dans un sens ou dans l’autre, ont présenté à M. Schultze l’apparence d’une circulation du sang. Une particularité que je n’ai pu m’expliquer, est offerte par certains individus de cette singulière espèce: tandis que les autres sont presque diaphanes et ne montrent à l’intérieur, entre l’intestin et la peau, qu’une substance transparente, ceux-ci sont remplis et comme farcis de globules granuleux (pl. 2, fig. 4) en nombre considérable, tous égaux ou à-peu-près, et de \( \frac{1}{10} \) millimètre environ; ils changent de place dans l’intérieur, quand l’animal se contracte, et paraissent n’avoir aucune connexion ni entre eux, ni avec les autres organes. Spallanzani les avait remarqués, sans les comprendre plus que moi. Ce ne peuvent être les œufs, que l’on connaît si volumineux et surtout si peu nombreux chez ces animaux.

J’ai trouvé le Tardigrade, comme Eichhorn, dans des flacons où je conservais, depuis plus d’un an, des conserves et des lentilles d’eau; je l’ai trouvé aussi très abondamment dans l’eau des petites mares de la forêt de Fontainebleau, avec les Brachions, les *Floscularia*, etc., entre les rameaux d’une mousse très délicate (*Hypnum fluitans*).

III.

Si, maintenant, nous voulons jeter un coup-d’œil sur la classe qui contient ces animaux, et qu’à tort on a voulu nommer classe des rotateurs, nous devrons distinguer soigneusement les caractères exprimant des particularités plus ou moins douteuses de
leur organisation, et les caractères reconnus de tous les observateurs comme parfaitement avérés.

Ceux-ci sont : 1° de pouvoir se contracter brusquement et plusieurs reprises, de manière à faire entièrement rentrer sous l'enveloppe de la partie moyenne du corps les extrémités, ou au moins l'extrémité antérieure (i); 2° d'avoir toujours une enveloppe résistante, souvent même cornée, et de ne point se décomposer par diffusé, comme les infusoirs; 3° d'avoir un canal intestinal simple, droit ou presque droit, ce qu'on ne voit pas non plus chez les infusoirs; 4° d'avoir un appareil mandibulaire mu par des muscles spéciaux et composé de pièces articulées cornées, analogues à celles de l'armure œsophagienne des annelides et aux crochets de certains Helminthes, et nullement comparable aux baguettes cornées, rangées en manière de nasse autour de la bouche de certains infusoirs; 5° enfin, de se multiplier exclusivement par des œufs peu nombreux, et, proportionnellement, très volumineux, et jamais par division spontanée ou par gemmes, comme les infusoirs et les polypes.

On voit que ces caractères suffisent, et au-delà, pour distinguer ces animaux des infusoirs, auxquels on a supposé, sans preuve, il est vrai, des œufs qui auraient moins du centième de la longueur de l'animal adulte. Ces caractères se rencontrent dans l'Albertia et dans le Tardigrade; ils se rencontrent aussi dans tous les animaux rapportés par M. Ehrenberg à la classe des rotauteurs, excepté dans son Chaetonotus (Trichoda larus, Müller ) qui n'a pas de tégument ni de mandibule, et peut-être dans son Ichthydium, que je n'ai pas vu, mais que je suppose devoir être également étranger à la classe en question. Ces caractères doivent suffire aussi pour fixer la place de ces animaux dans la série animale; et je me range volontiers, sur ce point, à l'opinion de M. Milne Edwards, qui croit devoir les placer, comme je l'ai dit plus haut, avec les Helminthes et les Annelides, dans une division des articulés, qui reprendrait le nom de Vers.

(i) C'est la contractilité si prononcée de ces animaux qui détermina O. F. Muller, à les réunir en partie avec les Vorticelles qui possèdent aussi ce caractère, mais qui n'ont point du tout les mêmes organes digestifs ni les mêmes moyens de reproduction.
Dans l'énumération de ces caractères, ne figure pas précisément celui qui leur a valu le nom de rotateurs. C'est qu'en effet, il n'est pas, à notre avis, un caractère essentiel; il se montre avec plus ou moins d'importance dans des ordres et dans des familles, il est vrai, mais il disparaît entièrement dans d'autres, ou se modifie tellement qu'on ne peut plus l'y reconnaître. Ainsi, l'organe rotateur de l'Albertia, auquel, assurément, on ne contestera pas ses affinités avec les vrais rotateurs, cet organe est comme rudimentaire; il ne peut plus servir d'organe de locomotion ou de respiration comme chez d'autres; à peine peut-il servir à l'adduction des aliments, puisque l'animal vit au milieu de sa nourriture et qu'il n'a pas besoin de la chercher dans une vas- te étendue de liquide, au moyen des tourbillons qu'il y produirait, à la manière des Megalotrocha, qui ne nagent pas. Cet organe rotateur, nous le voyons chez certains genres où il est très développé, ne jouer que le rôle d'un organe appendiculaire ou accessoire, et se déplier seulement dans certaines circonstances assez rares: les rotifères, par exemple, ne voulurent le montrer à Spallanzani qu'après vingt-et-un jours d'observation continue (1), et cependant cet habile observateur désirait ardemment voir cet organe précédemment décrit par Leeuwenhoek et par Baker.

Les Floscularia, qui ont bien réellement des mandibules, ont au lieu d'organe rotateur, de longs cils qu'ils n'agissent jamais, et qui seraient plutôt un organe de tact que l'analogue des cils vibratiles des rotateurs, et le Chetonotus, s'il devait rester dans cette même classe, serait lui-même également privé de cet organe, car on ne pourrait nommer ainsi les cils vibratiles de sa face ventrale, qui ont bien plutôt le caractère des cils des Trichodes et des Leucophres.

Ce n'est donc point de là que la classe aurait dû prendre sa dénomination; ce devrait être plutôt de la faculté qu'ont ces animaux de se contracter brusquement en retirant leur extrémité antérieure sous l'enveloppe résistante de la partie moyenne,

ou du grand volume de leurs œufs et de la courte période de leur développement, ou encore de leur appareil mandibulaire, si cet appareil ne se voyait pas également chez des Annelides, et plus ou moins modifié chez des Helminthes; pour cette raison, je préférerais encore à la dénomination de *rotateurs* ou *rotatoires* (*rotatoria*) introduite par M. Ehrenberg, celle de *Gnathostomes* proposée précédemment comme exprimant le caractère plus essentiel de l'armure pharyngienne de ces animaux, si cette dénomination n'avait été appliquée récemment par M. Owen à un genre d'Helminthes *Nematoïdes*. Cependant, comme il importe qu'une classe aussi tranchée soit désignée par un nom qui ne renferme ni une contradiction, ni un contre-sens, je me réunis à M. Milne Edwards et M. Peltier pour proposer celui de *Systolides*. Cette dénomination, dérivée du mot grec *στολή*, contraction, rappelle bien les contractions brusques de l'animal tout entier et de ses parties externes ou internes, et en même temps elle est assez conforme aux dénominations d'Annelides et d'Helminthides des autres classes de la division des Vers.

Les caractères fondés sur des traits d'organisation douteux ou hypothétiques sont ceux qu'on a voulu prendre des organes des sens et du système nerveux, des systèmes circulatoire et respiratoire, et des organes génitaux mâles.

Rien de plus douteux, en effet, que la signification attribuée aux points rouges de ces animaux: quoiqu'ils ne présentent aucune trace d'organisation distincte, on les prend pour des yeux, par cette seule raison que les yeux des animaux plus élevés dans la série sont accompagnés d'un pigment coloré, et, ce principe admis, on veut trouver des yeux jusque chez les animaux les plus simples, partout où l'on voit un point rouge. Mais ces points colorés sont si variables par leur nombre et par leur position, ils ont si peu d'importance physiologique, que, bien loin de pouvoir servir à limiter des genres, ils ont conduit au contraire M. Ehrenberg à séparer des espèces très voisines, sinon identiques, par ce seul motif que les points rouges étaient ou n'étaient pas visibles: ainsi ses *noteus*, par exemple, sont des brachions aussitôt qu'un point rouge se manifeste, comme
il est déjà arrivé au *noteus Bakeri*, et toutes ses *Philodinées*, à part ses *Monolabis*, qui sont un genre bien distinct, et peut-être son *Callidina* et ses deux genres africains *Hydrias* et *Tylphina*, que de son propre aveu il n'a pu étudier suffisamment, toutes, dis-je, m'ont paru appartenir au même genre Rotifère, et la position des points rouges ou le développement plus ou moins complet de la queue, m'ont paru des différences purement spécifiques, sinon accidentelles.

Les muscles des animaux inférieurs ne m'ont point présenté de stries transverses au-delà des *Pentastomes*, qui sont des Entozoaïres; je n'en ai jamais vu chez les Rotateurs, et M. Ehrenberg lui-même dit ne les avoir vus que chez une seule *Diglëna*. On conçoit, d'après cela, combien il doit être facile de prendre pour des nerfs de simples cordons musculaires qui ne montrent aucune organisation intérieure; c'est, je crois, ce qui est arrivé pour les prétendus nerfs des Rotateurs. Quant au bulbe appelé un cerveau ou un ganglion optique, je ne sais ce que c'est; mais il me paraît impossible de donner cette signification au gros bulbe dorsal sur lequel est fixé le point rouge de la *Vorticella tremula* de Müller (*Synchæta* Ehr.)

Les organes génitaux mâles ont été interprétés par M. Ehrenberg d'une manière que je ne peux entièrement admettre; nous avons vu plus haut (page 178) ce qu'on doit penser de la prétendue vessie contractile servant d'organe d'éjaculation, dont l'analogie est invoquée pour prouver la signification des vésicules contractiles des Infusoires proprement dits, tandis que, réciproquement, ceux-ci viennent à leur tour, suivant la logique de l'auteur, confirmer la vraie signification de l'organe des Rotateurs. Quant aux cordons charnus ou glanduleux que M. Ehrenberg nomme les testicules, il ne serait pas impossible qu'ils pussent réellement avoir cette dénomination. Cependant l'auteur allemand convient lui-même qu'ils manquent chez plusieurs Rotateurs pourvus au contraire de la vessie contractile; et d'un autre côté, leur connexion avec les organes vibratiles pris pour des branchies intérieures, semble contredire cette signification.

Les organes respiratoires intérieurs découverts par M. Ehren-
berg, quoique différents par leur forme (1) de ceux que j'ai décrits chez l'\textit{Albertia}, me paraissent bien en effet propres à la fonction qu'on leur attribue; mais je ne puis croire que l'eau pénétrant de l'extérieur à l'intérieur, pour la respiration, par le prolongement nommé l'éperon chez les Rotifères, attendu qu'on ne peut jamais observer à son extrémité aucun mouvement d'entrée ou de sortie du liquide. M. Ehrenberg, embarrassé de la signification de cet organe, l'avait d'abord, dans son second Mémoire (page 40, 1832) considéré comme un organe de génération ayant, disait-il, « par sa position et sa forme, une grande analogie avec l'organe mâle des Mollusques »; et plus loin, il se résumait en disant: « Comme ces animaux se fécondent eux-mêmes, on pourrait aussi, en le considérant comme un organe générateur d'animaux hermaphrodites, l'appeler indifféremment clitoris ou pénis ». Aujourd'hui, ayant besoin d'expliquer l'arrivée de l'eau extérieure jusqu'aux branchies intérieures, le même micrographe, comme je l'ai dit plus haut, veut donner à l'éperon cette destination; mais pour moi, il me paraît bien plus probable que c'est la vessie contractile qui remplit cet objet, et je me borne à dire que j'ignore entièrement à quoi peut servir l'éperon.

Il me reste à faire un aveu du même genre relativement au système circulatoire des \textit{Systolides} ou Rotateurs. J'ai bien vu les plis qui ont paru des vaisseaux longitudinaux transversaux à M. Ehrenberg; je n'ai pas vu les prétendus réseaux vasculaires qu'il décrit tout autour de l'organe rotateur, le mouvement des cils m'en a empêché comme il en empêchera bien d'autres sans doute: et, à moins d'avoir vu le mouvement du liquide dans ces vaisseaux, je ne comprends pas un système vasculaire formé de canaux se coupant à angle droit, à de grandes distances, sur tout le corps, et venant s'anastomoser indéfiniment autour de l'organe rotateur seulement.

J'aurais bien encore à émettre d'autres doutes sur différents

---

(1) Ces organes, tels que je les ai vus dans divers systolides tels que l'\textit{Hydatina}, l'\textit{Enteroplea}, etc., m'ont toujours paru consister essentiellement, en un filament agité d'un mouvement ondulatoire continu.
points de l'organisation annoncée chez les animaux de cette classe; je dirais notamment que l'interprétation du mouvement des cils, qui décrivent des surfaces coniques ayant leur sommet à la base du cil, me paraît entièrement erronée, et qu'elle est contredite par la flexibilité de ces cils, par leur prompte décomposition après la mort, et par leur flexion évidente dans les intervalles du repos, etc.; mais devant traiter ce sujet d'une manière complète dans un ouvrage spécial, j'ai voulu montrer seulement ici pourquoi je n'avais pas indiqué chez l'Albertia des organes qu'on dit avoir vus chez des animaux voisins.

**Explication de la planche 2.**

Fig. 1. *Albertia vermicularis* jeune, ayant l'ovaire peu développé et ses organes ciliés rétractés; a. branchies internes, b. une branchie supposée, isolée et plus grossie; c. sacs gastriques postérieurs; d. sacs gastriques antérieurs; r. appareil mandibulaire; q. anus.

Fig. 2. *Albertia vermicularis* adulte avec des œufs o, o', o", à différents degrés de développement. Cette figure et la précédente sont grossies 300 fois.

Fig. 3. Mandibules de l'Albertia et leur support grossi 600 fois.

Fig. 4. Tardigrade de Spallanzani vu presque de face avec la bouche rétractée, et contenant des globules granuleux de nature inconnue (grossi 300 fois).

Fig. 5. Le même vu de profil, avec la bouche prolongée en trompe courte et sans granules intérieurs (grossi 300 fois).

Fig. 6. Partie antérieure d'un tardigrade, ayant la bouche avancée (grossi 600 fois).

Fig. 7. Partie postérieure du tardigrade, grossie 600 fois.

**Compte-rendu des actes de la Société des Sciences naturelles de Bâle, août 1836 à juillet 1838.**

La partie zoologique et zootomique de ce compte rendu, contient les notices suivantes:


II. M. Miescher présente quelques exemplaires de vers intestinaux, découverts

Actes de la Société des Sciences naturelles de Bâle.

dans le cæcum et le rectum du cheval. Ces Entozoaires se trouvent dans la substance de la membrane muqueuse; logés dans des espèces de petits nids, qui apparaissent à l’œil nu sous la forme de petites élévations, au milieu desquelles se voit un point noir; on ne peut guère les distinguer de autres glandes intestinales, mais considérés avec la loupe, on y découvre les petits Entozoaires. On ne peut pas enlever ces vers en lavant l’intestin, même après un certain temps de macération; il faut les extraire à l’aide d’une aiguille. Ils appartiennent à l’ordre des Nématoïdes; leur corps est rond, distinctement annelé, finissant en une queue beaucoup moins large que la partie antérieure. La bouche est ronde et tronquée, et il en part un intestin noir ou rouge-noirâtre, qui s’étend le long du corps transparent, et qui finit à l’anus, un peu avant l’extrémité de la queue. La longueur de ces vers est de une à deux lignes et demie. Il n’y a pas de trace de l’appareil sexuel.

D’après la description que nous venons de rapporter, M. Miescher conclut que ces vers sont les Embryons du Strongylus armatus, qui se trouvent toujours en même temps dans les intestins. Il ne leur manquerien de la formation propre à ce dernier, que la structure toute particulière des organes mâles; mais ceux-ci manquent tout-à-fait chez ces embryons.

L’auteur puise encore un argument dans les circonstances suivantes:

Il est connu qu’on trouve dans le cœcum du cheval deux variétés de Strongylus armatus, une qui est plus petite, et une autre plus grande, Rudolphi n’a pas décidé s’il faut en faire deux espèces différentes ou deux variétés. Les uns ont une longueur de 4 à 6 lignes, et sont d’une couleur jaune- blanche; les autres sont rouges, et longs d’un à deux pouces. Les petits sont les plus nombreux; mais leur appareil sexuel est parfaitement achevé, et on trouve dans leurs ovaires des œufs parfaits. M. Miescher rejette donc l’idée que la grande variété de Strongle ne serait que des individus plus âgés que la petite variété; au contraire, il a trouvé parmi ces embryons aussi deux espèces correspondantes. L’espèce de petits vers ou embryons, que nous avons décrit, correspond à la petite variété qui est aussi la plus nombreuse. Mais l’auteur dit avoir trouvé une fois, dans la membrane muqueuse d’un cheval, une espèce de vésicule, contenant un ver enroulé, d’un rouge foncé, et d’une longueur de 4 lignes et demie, qui ne présentait non plus aucune trace des organes sexuels et il croit que c’est un embryo de la grande variété du Strongylus armatus. Il y aurait donc de cette manière une véritable éclosion des œufs des Entozoaires dans les intestins.

III. M. HAGENBEACH fait une communication sur la structure particulière du cerveau d’un singe du genre Cercopithecus. Il a trouvé le cercle de Willis double. L’organe de l’ouïe se rapproche beaucoup de celui de l’homme; mais il y a quelque différence dans le trajet des nerfs.
Recherches pour servir à l'histoire de la circulation du sang chez les annelides.

Par M. H. Milne Edwards.

(Lues à l'Académie des Sciences le 30 octobre 1837.)

§ 1. Les grandes fonctions de l'organisme n'offrent en général que des modifications légères lorsqu'on les étudie dans une famille naturelle, et que cette famille occupe un rang élevé dans la série zoologique. Alors, il suffit ordinairement d'un seul exemple pour donner une idée exacte du mode de structure et du jeu d'un appareil dans toute une classe d'animaux; mais lorsqu'on poursuit des recherches analogues dans les degrés inférieurs de l'échelle animale, on est loin de rencontrer une fixité pareille. Là, on voit ces mécanismes compliqués disparaître peu-à-peu, et, en perdant de leur importance, ils présentent souvent des variations considérables sans que ces changemens entrainent d'autres différences dans le plan général de l'organisation, ou coïncident avec les limites des grandes divisions naturelles du règne animal. Il en résulte que dans les classes inférieures, l'anatomiste a besoin de multiplier davantage ses investigations, et ne peut établir des règles générales que sur une masse de faits bien plus considérable.

La respiration, par exemple, chez les animaux vertébrés, est une des fonctions dominatrices de l'organisation, et se présente avec les mêmes caractères essentiels dans toutes les espèces dont chacune des grandes divisions de cet embranchemen se compose; mais chez les Mollusques, les Arachnides, les Crustacés et les autres animaux inférieurs, elle offre souvent, dans un même groupe naturel, des variations extrêmes, et on l'y voit devenir tour-à-tour l'apanage d'organes qui,
avec des modes de structure bien différents, se suppléent entre eux sans que leur changement paraisse coïncider nécessairement avec d'autres modifications dans l'économie intérieure de ces êtres.

La série naturelle, formée par les vers (1), est une de celles dans lesquelles on doit s'attendre à rencontrer le plus de diversité dans le mode de conformation et dans le mécanisme de plusieurs des grands appareils physiologiques. On y voit deux fonctions de premier ordre, la respiration et la circulation, présenter une dégradation rapide, et cesser enfin d'être distinctes, bien que leur rôle ait été d'abord d'une haute importance. L'étude de ces fonctions, soit chez les Annélides, soit chez les Helminthes, promettait donc au zoologiste des faits variés et intéressants; aussi, quoiqu'elle ait déjà fixé l'attention de plusieurs observateurs, ai-je désiré m'en occuper à mon tour et dans la vue de faire de nouvelles recherches sur l'anatomie et la physiologie des Annélides, j'ai visité cette année divers points de nos côtes où ces animaux abondent.

C'est principalement à Roscoff que j'ai eu l'occasion d'examiner un grand nombre de vers marins, et si je signale cette circonstance, c'est afin de pouvoir, sans plus de retard, exprimer publiquement toute ma reconnaissance envers un des membres de cette académie, M. Beautemps Beaupré, qui, occupé du relevé hydrographique du voisinage de ce port, a puissamment contribué aux succès de mes recherches, en me fournissant des moyens d'exploration sans lesquels je n'aurais pu que difficilement me procurer tous les animaux dont je voulais examiner la structure intérieure.

§ 2. Cuvier, comme chacun le sait, fut le premier à former des Annélides une classe distincte. Frappé de la couleur si remar-

(1) C'est à dessein que je me sers de ce mot, qui est abandonné par la plupart des zoologistes classificateurs. En effet, je pense que c'est avec raison que M. de Blainville rapporte les Helminthes à la série des animaux articulés, et je crois qu'il faudrait diviser cet embranchement en deux groupes principaux, comprenant l'un les Articulés à pieds articulés, et l'autre les Annélides, les Helminthes, les Rotateurs, etc., série à laquelle on pourrait conserver le nom vulgaire de vers.
Milne Edwards. — Circulation dans les Annelides. 195

quable du liquide nourricier, chez ces animaux, il les désigna d'abord sous le nom de vers à sang rouge, et Lamarck, tout en substituant à cette dénomination le nom d'Annelides, généralement adopté aujourd'hui, sembla aussi attribuer à l'existence de ce sang rouge une grande importance (1). Ce caractère éloigne en effet les Annelides des Mollusques, des Insectes, des Crustacés, des Vers Intestinaux et de tous les autres animaux inférieurs, pour les rapprocher des animaux vertébrés, et ce fut probablement pour cette raison seulement que ces deux naturalistes placèrent ces êtres, dont toutes les facultés sont si bornées, plus haut dans la série zoologique que les Crustacés et même que les Arachnides dont la structure présente une perfection bien plus grande et les facultés un développement correspondant.

M. de Blainville ne partage pas cette manière de voir, et, dans un article du dictionnaire des Sciences naturelles, il cita comme une exception à la règle générale, relative à la couleur du sang chez les Annelides, une des espèces les plus grosses de nos mers, l'Aphrodite hérissée (2). Pallas, à qui l'on doit tant d'excellentes observations sur les animaux inférieurs, avait, en effet, déjà noté que les vaisseaux de cette Aphrodite étaient remplis d'un liquide qu'il désigne sous le nom de lymphe (3), tandis qu'en décrivant plusieurs autres espèces, il avait mentionné l'existence de sang rouge. Néanmoins, l'anomalie,

(1) D’après le passage suivant, on doit croire que Lamarck considérait l’existence de sang rouge comme le caractère essentiel de la classe des Annelides et aurait à priori exclu de ce groupe les animaux vermiformes chez lesquels on pourrait par la suite constater son absence.

« Ce qui a effectivement paru très singulier, ce fut de trouver que les Annelides, quoique moins perfectionnés en organisation que les Mollusques avaient cependant le sang véritablement rouge, tandis que celui des Mollusques, des Crustacés, etc., n'a pas encore cette couleur qui dépend de son état et de sa composition, et qui est celle du sang de tous les animaux vertébrés. On sent bien que, parmi les animaux que nous rapportons à notre classe des Annelides ceux qui se trouveraient n'avaient pas dans leur organisation le caractère classique, n'infirment point ce caractère et ne sont placés ici qu'en attendant que leur organisation soit mieux connue. » (Animaux sans vertèbres, t. v, p. 276.)


(3) « Sectis in dorso longitudinaliter tegumentis, occasit vacuolum lympba sepé turbidula plenum, etc. » (Miscellanea zoologica, p. 89.)
MILNE EDWARDS. — Circulation dans les Annelides.

signalée par M. de Blainville, ne fut accueillie qu'avec doute par d'autres savans qui faisaient également autorité dans la science, et notamment par M. Cuvier qui croyait se rappeler avoir observé le contraire dans une espèce voisine (1). Depuis lors on a constaté l'existence d'un liquide nourricier incolore chez quelques Sangsues, mais on n'a pas fait, à ma connaissance, de nouvelles recherches sur ce sujet chez les Annelides Chétopodes, et une des premières questions que je m'étais proposé de résoudre, en étudiant la circulation du sang dans ces animaux, était celle de la constance ou des variations dans la couleur de ce liquide.

§ 3. Chez les Eunices (2), les Euphrosines, les Néréides, les Nephtys, les Glycères, les OÉnones, les Arénicoles, les Hermelles, les Térebélles, les Serpules, etc., j'ai toujours trouvé le sang de couleur rouge comme chez les Lombrics et les Sangsues. Mais, du reste, examiné au microscope, ce liquide ne m'a pas semblé différer du sang des autres animaux sans vertèbres. Les globules qu'on y voit nager n'ont pas du tout l'aspect de ceux propres au sang des animaux vertébrés : ce sont des corpuscules circulaires dont la surface a une apparence framboisée, et dont les dimensions varient extrêmement chez un même animal.

Je n'ai pas eu l'occasion d'observer à l'état frais le sang de l'Aphrodite hérissée; mais il m'a été facile de constater que dans un démembrement du genre dont cet Annelide fait partie, dans les Polynoës, le sang n'est pas rouge comme le pensait Cuvier, mais seulement un peu jaunâtre. Dans le genre Si-

(1) Voici comment M. Cuvier s'exprime à ce sujet dans la dernière édition de son Règne animal, publiée en 1830 : « Les Annelides sont les seuls animaux sans vertèbres qui aient le « sang rouge »; (note) « On a dit que les Aphrodites n'ont pas le sang rouge : je crois avoir observé le contraire dans l'Aphrodita squamata. » (Op. cit, t. i, p. 186.)

(2) Cette couleur rouge du sang des Eunices est sensiblement la même dans tout le système vasculaire, et je ne puis m'expliquer comment M. Dele Chiaje a été conduit à penser que, chez un Annelide de la même famille appartenant au genre Diopatra, ce liquide est rouge dans une portion du cercle circulatoire, et vert dans l'autre. (Voyez Memorie sulla storia e notomia degli animali senza vertebre del regno di Napoli, vol. ii, p. 399.)
galion, qui appartient à la même tribu naturelle, le sang n’offre également aucune teinte de rouge, et est presque incolore.

Cette coïncidence entre la couleur anormale du sang et la similitude d’organisation qui détermine le rapprochement de ces divers animaux en une même tribu naturelle, n’avait rien qui dût nous étonner, et, d’après ces faits, on pouvait être porté à penser que, dans tout le groupe des Aphrodisiens, le sang devait être blanc au lieu d’être rouge comme chez les Annelides ordinaires. Mais en poursuivant mes observations, je ne tardai pas à voir que dans cette classe d’animaux la couleur du liquide nourricier peut varier, non-seulement d’une famille à une autre, mais aussi d’un genre à un genre voisin de la même famille. Ainsi, tandis que le sang est d’un rouge intense chez les Néréides, les Glycères et les Nephtys, il est incolore ou seulement jaunâtre chez les Phyllodocés.

Mais une anomalie encore plus remarquable, est celle qui m’a été offerte par une grande et belle espèce de Sabelle assez commune à Cancale; car, chez cet Annelide, j’ai constaté que le sang est d’une couleur verte tirant sur l’olive, bien que dans les genres voisins des Serpules, des Térébelles et des Hermelles, ce liquide soit rouge. (1)

D’après ces variations nombreuses, on voit que dans cette classe d’animaux, la couleur du sang est loin d’être un caractère d’une importance physiologique aussi grande que beaucoup de naturalistes l’avaient pensé; et ce résultat reçoit une nouvelle confirmation de cet autre fait que j’ai eu l’occasion de constater pendant mon voyage sur les côtes d’Alger. Les Annelides ne sont pas les seuls animaux sans vertèbres dont le sang peut être rouge; car chez un ver dont l’organisation a la plus grande analogie avec celle des Planaires, la Lancette (Lanceola Blainv.), le liquide nourricier est rouge comme chez la plupart des Annelides, tandis qu’il est incolore chez les Planaires, les Nermertes et tous les autres animaux avec lesquels cet Helminthe a le plus d’affinité.

(1) Depuis la lecture de ce travail, M. Dujardin a fait connaître un second exemple d’Annelides à sang vert; il a désigné cet animal sous le nom de Chloronema Edwardsii.
§ 4. Le système circulatoire des Annelides présente aussi des modifications très considérables lorsqu'on l'étudie comparativement dans les divers genres de cette classe. Le mode de distribution des canaux vasculaires diffère beaucoup d'un genre à un autre, et les fonctions d'un même vaisseau varient au point qu'il devient difficile d'appliquer avec justesse à ces organes les noms d'artères et de veines par lesquels on les désigne chez les animaux supérieurs.

On doit à plusieurs anatomistes des observations sur la disposition du système sanguin dans cette classe d'animaux. Willis fut un des premiers à s'en occuper (1). Ses dissections furent faites sur le Lombric terrestre, dont la circulation a été depuis étudiée avec plus de soin par Home (2), M. de Blainville (3), M. Morren (4) et M. Dugès (5). L'appareil vasculaire des Sangsues a été examiné par Thomas (6), Cuvier (7), M. Moquin-Tandon (8), M. Dugès (9), M. Phillipi (10) et quelques autres naturalistes. L'anatomie des mêmes organes chez l'Arénicole a occupé Cuvier (11) et Home (12). Hunter nous a laissé une description des vaisseaux de l'Amphinome, publiée récemment par les soins de M. Owen (13). Enfin, on trouve aussi dans divers écrits de M. de Blainville (14) et de M. Delle Chiaje (15) des observations sur cette partie de l'anatomie des Serpules, des Amphitrites,

(1) De animal brutorum.
(2) Philosophical transactions.
(4) De lumbrici terrestris historia naturali necnon anatomia tractatus, Bruxellis, 1829.
(5) Recherches sur la circulation, la respiration et la reproduction des Annélides abranche (Annales des sciences naturelles, 1re série, t. XV.)
(6) Mémoire pour servir à l'histoire naturelle des sangsues, in-8°, Paris, 1806.
(7) Leçons d'anatomie comparée, t. IV, p. 413.
(8) Monographie de la famille des Hirundinées, in-4°, Montpellier, 1827.
(9) Loc. cit.
(10) Memoria sugli Annelidi della famiglia delle sanguisughe, in-4°, Milan, 1837.
(12) Philos. trans.
(14) Article vers du dictionnaire des Sciences naturelles, t. LVII, p. 405 et 406.
(15) Memorie sulla storia e nomologia degli animali senza vertebre del regno de Napoli, 11 et 11.
des Néréides, etc. Mais presque toutes ces descriptions laissent quelque chose à désirer : à un petit nombre d’exceptions près, elles sont d’une brièveté extrême et ne sont pas accompagnées de figures, si nécessaires en pareille matière; en général, elles sont peu comparatives, et même, sous le rapport de l’exactitude, elles ne sont pas toujours à l’abri de reproches; enfin elles ne nous apprennent que peu de chose sur le mécanisme de la circulation chez la plupart des Annelides.

Les observations que je vais avoir l’honneur de soumettre à l’Académie ont été entreprises dans la vue de remplir une partie de ces lacunes. Elles ont été toutes faites sur le vivant; et c’est en général par l’examen de jeunes individus dont le corps est presque translucide, et en les comprimant légèrement entre deux lames de verre sur le porte-objet du microscope, que j’ai étudié le jeu des diverses parties de l’appareil circulatoire, et que j’ai déterminé la direction du courant sanguin dans l’intérieur du système vasculaire; mais c’est toujours par la dissection que j’ai constaté le mode de distribution des vaisseaux.

§ 5. Un des premiers Annelides que j’ai soumise à cette double investigation, est la Térébelle nébuleuse, grande et belle espèce qui est assez commune sur nos côtes, mais qui n’a encore été mentionnée que d’une manière très succinte par un naturaliste anglais, Montagu (1). Dans une des excursions zoologiques que j’ai faites conjointement avec M. Audouin, il y a une dizaine d’années, nous l’avons rencontrée en assez grand nombre sous des pierres près de la limite des plus basses eaux, et elle a fixé notre attention à cause de son mode particulier de locomotion. Ses tentacules labiaux, dont le nombre et la longueur sont très considérables, et dont la contractilité est extrême, ont la faculté d’adhérer avec force aux corps sur lesquels ils s’appliquent, et c’est en prenant ainsi des points d’appui autour de lui que l’animal se déplace à peu-près comme le font les Poulpes et les Seiches. Toutes les espèces du même genre ne possèdent pas

---

(1) Terebella nebula Mont. Trans. of the Linn. Soc. 1. xx.
Cette faculté locomotrice, et nous n’avons vu rien de pareil dans les autres groupes naturels formés par les Annelides.

Chez cette Térébelle, on trouve sur la ligne médiane du dos, immédiatement sous les tégumens communs et à la partie antérieure du corps, un gros vaisseau (1) qui repose sur le tube digestif, et qui est le siège de contractions irrégulières à l’aide desquelles le sang contenu dans son intérieur est poussé d’arrière en avant. Ce vaisseau dorsal remplit par conséquent les fonctions d’un cœur, et si l’on voulait le comparer à ce qui existe chez les animaux supérieurs, il faudrait le considérer comme le représentant physiologique du cœur pulmonaire, car son extrémité antérieure donne naissance aux vaisseaux qui portent le sang aux branchies, et ce sont ses battemens qui envoient ce liquide dans ces organes, siège du phénomène de la respiration.

C’est par son extrémité postérieure que ce gros vaisseau dorsal reçoit le sang qu’il est chargé d’envoyer aux branchies. Dans ce point, on y voit aboutir plusieurs veines qui pour la plupart adhèrent aux parois de l’intestin. L’un de ces canaux veineux est récurrent et longe l’œsophage au-dessous du vaisseau dorsal. Un autre vaisseau également médian marche d’arrière en avant sur la face supérieure de l’intestin (2), et reçoit à droite et à gauche une multitude de branches provenant d’un lacis vasculaire très abondant, dont les parois de ce dernier organe sont garnies. Mais les principales veines qui se rendent à cet espèce de cœur tubiforme, sont deux gros troncs transversaux (3) qui forment un anneau autour du canal digestif et se réunissent en dessous pour se continuer avec un gros vaisseau médian, lequel est accolé à la face inférieure de l’intestin et reçoit, comme le vaisseau dorso-intestinal, un grand nombre de branches latérales provenant du lacis vasculaire déjà mentionné. Enfin on distingue aussi à la face interne des tégumens du dos (4),

(1) Voyez planche 10, fig. 1 f.
(2) Pl. 10, fig. 1 g.
(3) Pl. 10, fig. 1 h.
(4) Pl. 10, fig. 1 l.
un petit vaisseau médian qui reçoit dans chaque anneau plusieurs branches latérales, et qui communique aussi avec le vaisseau dorso-intestinal par des rameaux anastomotiques nombreux.

Les divers vaisseaux, dont nous venons d'indiquer la position, doivent être considérés comme formant par leur réunion le système veineux général, et le sang conduit par leur intermédiaire, dans le tronc contractile que nous avons comparé à un cœur pulmonaire, est ensuite poussé en majeure partie dans les canaux afférents des branchies, qui, au nombre de trois paires, naissent de l'extrémité antérieure de ce vaisseau, et pénètrent presque aussitôt dans les arbuscules respiratoires correspondants. Mais tout le sang, ainsi poussé d'arrière en avant, ne se rend pas aux branchies, car une certaine quantité pénètre dans un petit vaisseau médian qui se rend au bord labial et aux tentacules.

Le sang, après avoir respiré dans les branchies, pénètre dans des vaisseaux qui vont déboucher dans un canal médian (1) situé au-dessous du tube digestif et au-dessus du cordon ganglionnaire. Ce tronc ventral règne dans toute la longueur du corps, et fournit, pour chaque anneau, une paire de vaisseaux transverses, qui, après avoir donné naissance à des branches destinées aux téguments de la face inférieure du corps, et aux pieds, se recourbent en dessus et vont aboutir à la face supérieure de l'intestin, où leurs ramifications contribuent à la formation du lacs vasculaire dont il a déjà été question.

Le vaisseau ventral et ses branches remplissent donc les fonctions d'un système artériel, et ce sont les branchies elles-mêmes qui déterminent le cours du sang dans l'intérieur de ce système. En effet, ces organes se contractent de temps en temps avec force, et lancent ainsi le sang qui a respiré dans les vaisseaux destinés à le distribuer aux diverses parties du corps.

Il existe, comme on le voit, dans l'appareil circulatoire de cet Annelide, deux agens moteurs affectés à des usages différents; l'un servant à lancer le sang dans le système vasculaire

(1) Pl. 11, fig. 1 bis.
branchial, l'autre à faire cheminer ce liquide dans le système vasculaire général. L'un de ses agents d'impulsion remplit par conséquent les fonctions du cœur pulmonaire des animaux supérieurs, et l'autre remplit celle du cœur aortique en même temps qu'il est l'instrument spécial de la respiration; seulement ce cœur pulmonaire est ici un simple vaisseau à parois contractiles, et le représentant physiologique du cœur aortique n'est autre chose que l'appareil branchial lui-même.

§ 6. Ce mode singulier de circulation que je venais d'observer dans la Térébelle nébuleuse, s'accordait si peu avec ce que M. Delle Chiaje a dit de l'appareil vasculaire d'un autre Annelide du même genre, propre à la Méditerranée (1), que j'ai cru nécessaire de multiplier davantage mes recherches, afin de voir si en effet il existe des différences considérables dans la structure de cet appareil chez les diverses espèces du même genre. Je n'ai pas eu l'occasion de disséquer la Térébelle napolitaine dont parle M. Delle Chiaje, mais j'ai examiné la Térébelle coquille (2), et il suffira de jeter les yeux sur le dessin que j'en donne (3) pour se convaincre que, sous tous les rapports essen-

(1) Voici comment il s'exprime à ce sujet: "Il sangue della Terebella (Amphit. neapolitana) delle vene e delle arterie brachiali replicate volte bifurate sbocca nell' anello vascoloso, da cui nascono a dritta e sinistra le arterie laterali; e dal centro incomincia il cuore, che è representato da corto vaso semicilindro rigonfio pulsante e nercicco, a traverso il quale passa l'esofago.

(2) Terebella conchilega Savigny.

(3) Pl. 11, 1.
tiels, la circulation s’y fait de la même manière que chez la Térébelle nébuleuse. J’ai étudié aussi le cours du sang dans une troisième espèce du même genre qui me parait être la Térébelle cirrheuse de Montagu (1), et j’y ai encore constaté une identité presque parfaite avec ce que j’avais déjà vu chez la Térébelle nébuleuse; aussi me semble-t-il probable que le même plan d’organisation doit se retrouver dans tout ce genre si naturel, et que le désaccord, dont je viens de parler, tient à quelque inexactitude d’observation plutôt qu’à des différences réelles.

Il est cependant à noter que la disposition des vaisseaux sanguins n’est pas identiquement la même dans toutes les espèces de Térébelles que j’ai disséqués. Ainsi, dans la Térébelle coquillière, les branches latérales du vaisseau ventral ne forment pas des anses pour gagner la face supérieure de l’intestin, mais se rendent presque exclusivement à un lacis vasculaire, situé de chaque côté de la cavité viscérale, auprès de la base des pattes, et il naît de ce même tronc médian d’autres branches impaires qui se rendent directement au réseau vasculaire des parois intestinales. (2)

§ 7. Les Térébelles ne sont pas les seuls Annelides chez lesquels les branchies remplissent en même temps les fonctions d’un cœur et d’un instrument de respiration. D’après la structure de ces organes, chez les Amphinomes et les Euphrosines, je suis porté à croire que, dans ces deux genres, ils possèdent aussi la faculté de se contracter et d’imprimer ainsi au sang une impulsion circulatoire; enfin, le même phénomène curieux se remarque chez les Arénicoles. Cuvier en a dit quelques mots en parlant de ce dernier animal, mais sans paraître y attacher l’importance qu’il nous semble avoir réellement dans le mécanisme de la circulation. (3)

(1) Terebella cirrata Montag. Trans. of the Linn. soc. vol. xii.
(2) Planche 2.
(3) Après avoir décrit les branchies de l’Arénicole, il ajoute: «Tout cet appareil ne peut bien se voir que, pendant un instant très court, pendant lequel il est étendu en tous sens et
D’un autre côté il est aussi des Annelides qui, tout en étant pourvus d’appendices branchiaux, bien développés, ne présentent rien de semblable dans le jeu de ces organes, et il est à remarquer que la similitude dans la cause motrice du sang artériel chez les uns, et sa diversité chez les autres, n’entraîne ni pour les premiers ni pour les derniers quelque mode d’organisation particulier et constant du système circulatoire.

Ainsi, un des Annelides, qui, par le mode général de distribution des vaisseaux sanguins, se rapproche le plus des Térébelles, est précisément un de ceux chez lesquels les branches ne se contractent pas, et ne remplissent par conséquent aucun rôle actif dans le mécanisme de la circulation. On pourra juger de cette ressemblance par les détails suivants :

§ 7. Dans l’Eunice sanguinea (1), une des espèces les plus grandes et les plus communes de nos côtes, on trouve, comme chez les Térébelles, un vaisseau dorsal (2), gros et court, qui repose sur la portion pharyngienne du tube digestif, sans y adhérer, et qui, par son extrémité postérieure, communique également avec un anneau vasculaire dont la portion stomacale de ce même tube est entourée à son origine. Cet anneau est moins gros que chez les Térébelles, et ne se continue inférieurement qu’avec des branches veineuses, peu considérables, mais en dessus il communique avec deux vaisseaux sanguins, qui, accolés l’un à l’autre, longent la face supérieure du canal digestif et correspondent évidemment au vaisseau unique que nous avons vu occuper la même place chez les Térébelles.

* d’une belle couleur rouge ; l’instant d’après, il s’affaisse sur lui-même, toutes ses branches se ploient : il pâlit et devient tout-à-fait gris. Ces deux états alternent aussi l’un avec l’autre, tant que l’animal est en bonne santé, et sont causés par le sang qui se porte dans les branches, pour y respirer, c'est-à-dire pour y subir l’action de l’élément ambiant et qui retourne en- suite dans l’intérieur du corps. » (Art. Arénicole du Dictionnaire des Sciences naturelles, t. II, p. 474.)


(2) Planche 11, fig. 2 l’
Dans son trajet, vers la tête, le vaisseau dorsal unique qui fait suite à ces deux veines dorso-intestinales, et qui repose, comme nous l’avons déjà dit, sur le pharynx, reçoit plusieurs branches venant les ures des parois du tube digestif, situé au-dessous, les autres des muscles et des téguments de la portion voisine du dos. Ces dernières branches communiquent avec un vaisseau cutané médico-dorsal, très grêle, qui règne dans toute la longueur du corps, et fournit dans chaque anneau plusieurs rameaux sous-cutanés (1). Enfin, par son extrémité antérieure, le vaisseau dorsal envoie divers branches à la tête, et d’autres rameaux qui se portent en dehors comme chez les Térébelles, mais qui, au lieu de se rendre aux branches, remontent en arrière et vont se distribuer au pharynx où leurs divisions s’ana- nastomosent avec celle du vaisseau ventral.

Ce dernier tronc (2) suit le même trajet que chez les Térébelles, et donne également naissance, dans chaque anneau du corps, à une paire de branches latérales. Mais la conformation de ces branches est différente ainsi que leurs usages. Aussitôt après sa naissance, chacune d’elles se renfle beaucoup et se re-courbe brusquement sur elle-même, de façon à ressembler, lorsqu’on l’examine superficiellement, à une vésicule ovale; disposition qui a probablement induit en erreur M. Delle Chiaje, quand il a annoncé l’existence d’amphoules ou poches arrondies, situées sur le trajet des branches latérales du vaisseau dorsal de l’Eunice gigantesque (3). Ces vaisseaux transversaux

(1) Pl. 11, fig. 2 x.
(2) Pl. 11, fig. 2 g.
(3) La description que M. Delle Chiaje a donné de l’appareil circulatoire des Eunices ne s’accore pas mieux avec ce que j’ai observé sur la nature, que ce qu’il dit des vaisseaux des Térébelles, et le défaut de figures claires et bien significatives à l’appui de son texte, rend même la comparaison difficile entre ses observations et les miennes. Je me garderai bien de taxer cette description d’inexactitude; car il se pourrait qu’il existât des variations dans la conformation de l’appareil circulatoire d’une espèce à une autre espèce du même genre; mais cela me paraît peu probable. Pour faire mieux ressortir ce désaccord, je rapporterai ici textuellement le pas-sage dans lequel le savant anatomiste de Naples expose les résultats de ses recherches à ce sujet. En faisant l’histoire de l’espèce de Diopatre, qu’il désigne sous le nom de Nereis cuprea, il dit:

- Dell’anello vascoloso, che circonda il bulbo esofageo, escono dalla parte superiore e laterale
- due arterie, allattante della quale inferiormente situate abbia eccetto il succennato bulbo mus-
Circulation dans les Annelides.

se portent ensuite en dehors, fournissent une branche ascendante au tube digestif, gagnent la base des pieds, y donne naissance à plusieurs petites branches anastomotiques dont la réunion constitue un lacs vasculaire, et à des rameuses destinées aux muscles et aux téguments voisins; enfin pénètrent dans les filaments branchiaux correspondants et s'y terminent. Le sang qui...
a subi l’influence de l’oxygène, à travers la surface de ces appendices dermoïdes, est reçu dans d’autres canaux transversaux qui se dirigent vers le tube digestif en suivant les cloisons interannulaires, et débouchent dans le vaisseau situé de chaque côté de la ligne médiane sur la face dorsale de cet organe.

Les vaisseaux sanguins, considérés d’une manière absolue, se distribuent donc à-peu-près de la même manière chez les Eunices et les Térébelles, mais, si on les considère dans leurs fonctions et dans leurs rapports avec l’appareil respiratoire, on y voit, dans ces deux genres, des différences très grandes. Dans les Eunices, le cours du sang n’est pas déterminé par les contractions des branches, ni même du vaisseau dorsal, dont l’action perd presque toute son importance; mais par les battements de bulbes contractiles formés par la dilatation de la base de chacune des branches transversales du vaisseau ventral. Ces bulbes, au nombre de deux dans chacun des anneau du corps, excepté les six ou sept premiers, envoient le sang aux branches en même temps qu’à l’intestin, aux muscles, à la peau, etc., et, par conséquent, sous le rapport physiologique, ils représentent autant de cœurs. On en compte quelquesfois plusieurs centaines, et cette multiplicité des organes moteurs du sang, indépendants les uns des autres, est probablement une des circonstances qui donnent aux tronçons du corps de ces annélides la faculté de vivre pendant fort long-temps après avoir été séparés du reste de l’animal.

Il est également à noter que la portion du cercle circulatoire qui, chez les Térébelles, contient du sang artériel renferme, chez les Eunices, du sang veineux, et vice-versa. Enfin, on a pu remarquer que le vaisseau intestinal supérieur des Térébelles est représenté chez les Eunices par deux vaisseaux longitudinaux, 

« continuation du tronc, et deux latérales, une de chaque côté, beaucoup plus fortes et qui » ramènent le sang par des branches irrégulières de la masse buccale elle-même, de ses muscles « et de la peau des premiers anneau : c’est ce que nous avons vu très bien dans la Néréide géante. » (Art. Vers du Dictionnaire des Sciences naturelles, t. LXX, p. 405.)

La description que M. Delle Chirone donne des vaisseaux sanguins de sa Nereis parthenopoea, espèce appartenant au genre Lysidicée, ne diffère pas notablement de ce qu’il avait déjà dit de la N. euprea (Memorie, t. III, p. 165.)
situés de chaque côté de la ligne médiane du dos et accolés l'un à l'autre.

§ 8. Dans les *Hermelles*, la centralisation des grands canaux vasculaires est encore plus incomplète que chez les *Eunices*; car, chez cet annelide, il existe non-seulement deux vaisseaux intestinaux supérieurs comme chez ces derniers, et ces vaisseaux sont très écartés l'un de l'autre; mais encore on rencontre une disjonction analogue dans le vaisseau ventral, qui est impair et médian dans le quart-antérieur du corps et dans sa moitié postérieure, mais se compose dans sa partie moyenne de deux troncs parallèles très écartés l'un de l'autre. (1)

Ces annelides portent de chaque côté de la bouche un paquet de barbillons filiformes que l'on s'accorde généralement à considérer comme étant les branchies (2), mais, en examinant avec soin un grand nombre d'individus à l'état vivant, je me suis assuré que ces appendices ne peuvent être le siège de la respiration, car la quantité de sang qu'ils reçoivent est extrêmement petite. Les véritables branchies des *Hermelles* sont des lanières dermoïdes fixées à la base des pieds, tout le long du dos, et désignées par les auteurs sous le nom de *cirrhes*. Pendant la vie de l'animal, ces organes sont tellement gorgés de sang que leur couleur est d'un rouge intense, et ils communiquent avec les vaisseaux longitudinaux de la face dorsale et de la face ventrale du tube digestif par des canaux transverses assez gros et flexueux, qui ont une disposition très analogue à ce que nous avons vu chez les *Eunices*, et remplissent les mêmes fonctions, mais ne présentent pas de renflement en forme de bulbe comme chez ces derniers; aussi, sont-ce les vaisseaux longitudinaux qui, par leurs contractions, impriment au sang son mouvement circulatoire.

Sous le rapport des organes de la respiration, les *Hermelles* ressemblent donc beaucoup plus aux *Eunices* qu'aux *Térébelles*,

(1) Pl. 11, fig. 3.

et, si l'on persistait à classer les Annelides d'après la considération de leur appareil branchial seulement, il faudrait ranger les premières parmi les Dorsibranches plutôt que parmi les Céphalobranches; marche qui nous paraîtrait tout-à-fait en désaccord avec les affinités naturelles de ces êtres. L'erreur dans laquelle on est resté jusqu'ici relativement au siège de la respiration chez les Hermelles est une nouvelle preuve de la nécessité de l'étude des fonctions de l'économie sur le vivant, et des méprises auxquelles on s'expose lorsqu'on se contente de l'examen anatomique d'individus conservés dans nos musées à l'aide de l'alcool. Certes on ne pourra citer de naturaliste plus sévère dans ses investigations que ne le fut M. Savigny; à mesure que j'ai occasion de revoir sur la nature ce qu'il a décrit et si bien représenté dans ses planches, j'admire de plus en plus son exactitude et son habileté; cependant l'erreur que je viens de signaler n'est pas la seule qu'il ait commise dans la détermination des organes respiratoires des Annelides, et toujours ces méprises s'expliquent facilement par les altérations que les animaux soumis à son examen, loin des bords de la mer, ont dû éprouver par l'action même des agents employés pour en assurer la conservation.

§ 9. Les Néréides (1) présentent une modification de l'appareil circulatoire tout opposée à celle que nous avons fait remarquer chez les Hermelles. La duplicité du système vasculaire n'est com-

(1) On doit à M. de Blainville les notions suivantes sur la circulation de ces animaux: « La circulation des Néréides paraît être extrêmement simple. De toutes les parties du corps sans doute, mais surtout des parties de l'enveloppe modifiées pour la respiration, naissent les veines nules qui se terminent simplement dans un gros vaisseau médian et inférieur, situé sous le canal intestinal au-dessus du système nerveux. Cette veine se porte longitudinalement depuis l'extrémité postérieure du corps jusqu'à quelque distance de la tête où elle reçoit les ramifications qui en proviennent, et elle remonte ensuite par plusieurs branches, qui, des côtés du corps, vont aboutir à un seul tronc artériel flexueux, faisant l'office de cœur et d'aorte, et placé dans toute la longueur de la ligne dorsale, creusé même dans les parois de l'intestin. Ce vaisseau fournit à droite et à gauche, à mesure qu'il se porte de la tête à la queue des branches pour chaque anneau et pour chaque appendice. Ce que je viens de dire du système circulatoire des Néréides est tiré de ce que j'ai vu dans la Néréide pélagique, mais ce n'est que par analogie que je place la veine en dessous et l'artère en dessus; car les parois de celle-là sont évidemment plus épaisses que les parois de celle-ci. » (Art. Néréide du Dictionnaire des Sciences naturelles, t. xxxiv, p. 421.)
plète dans aucune partie du corps, mais la centralisation en est portée moins loin que chez les Térébelles, car non-seulement le vaisseau dorsal est partout unique, il présente aussi la même conformation et les mêmes propriétés sur toute la longueur du corps.

Ce tronc vasculaire (1) occupe la ligne médiane du dos et adhère à la couche musculaire sous-épidermée, plus intimement qu’au tube digestif situé au-dessous. Il est de grosseur médiocre et se contracte irrégulièrement, d’arrière en avant de manière à pousser le sang par ondées de la partie postérieure du corps vers la tête, mais il ne présente nulle part de renflement bien sensible. Dans chacun des segments du corps qui suivent le neuvième anneau, ce vaisseau dorsal communique avec une paire de canaux vasculaires transverses, qui se ramifient dans la base des pieds correspondants, et avec deux branches impaires qui descendent verticalement sur la ligne médiane de l’intestin, et contribuent à former le réseau sanguin dont les parois de ce tube sont couvertes. Parvenu près de la tête, il donne naissance à deux paires de vaisseaux transverses qui, après un trajet flexueux, vont déboucher directement dans le tronc ventral; puis on en voit partir deux autres branches latérales qui se rendent dans un plexus vasculaire extrêmement serré, appartenant à deux grandes poches membraneuses (2) placées sur les côtés du pharynx. Le vaisseau dorsal pénètre ensuite dans la tête, et s’y divise en plusieurs branches, dont les unes vont aux antennes ou aux parties voisines et les autres s’anastomosent avec deux vaisseaux longitudinaux accolés aux côtés du pharynx. Ces derniers vaisseaux se dirigent en arrière et se terminent bientôt dans une paire d’organes membraneux semblables à ceux dont nous venons de parler, et y forment un réseau anastomotique tellement riche qu’au premier abord je les ai pris pour des poches transparentes imparfaitement remplies de sang. Ces deux derniers sacs membraneux (3) sont unis entre eux par une petite

(1) Pl. 12, fig. 1 l.
(2) Pl. 12, fig. 1 o.
(3) Pl. 12, fig. 1 p.
bande transversale également pourvue d'une multitude de capillaires, et par leur extrémité postérieure, ils donnent naissance ainsi que les poches vasculaires de la première paire, à des vaisseaux récurrens, qui, après un court trajet, vont déboucher dans le vaisseau ventral.

La disposition de ce dernier vaisseau est essentiellement la même que chez la Térébelle nébuleuse. Au niveau de chaque anneau du corps, il donne naissance à droite et à gauche à une branche transversale qui se recourbe sur elle-même et se divise bientôt en deux rameaux dont l'un gagne le tube digestif et y forme avec les divisions des branches du vaisseau dorsal un lacis vasculaire très serré, et dont l'autre pénètre dans le pied correspondant, après avoir donné naissance à plusieurs rameaux récursusés réunis en touffe sur les parois latérales de la cavité abdominale. Cette branche inférieure des vaisseaux ventraux transverses remplit les fonctions d'une artère pulmonaire mais n'envoie presque pas de sang aux mamelons terminaux des rames sétilères, désignées par M. Savigny sous le nom de branches et se distribue presque entièrement à la portion de la peau qui entoure la base du pied (1) et qui présente un réseau capillaire superficiel, dans lequel la respiration doit certainement avoir son siège principal. C'est aussi de ce réseau vasculaire que naissent les vaisseaux que nous avons déjà vus se rendre des pieds au tronc médian du dos.

§ 10. Dans les Nephtys, la disposition générale de l'appareil circulatoire est essentiellement la même que chez les Néréides, si ce n'est qu'à la base du pharynx le vaisseau dorsal présente un petit bulbe et devient ensuite très grêle (2); qu'il n'existe rien d'analogue aux poches vasculaires situées, chez ces dernières, de chaque côté du pharynx, et qu'on distingue de chaque côté du cordon ganglionnaire un petit vaisseau longitudinal (3) qui, dans les Annelides dont nous avons déjà parlé, paraît exister

(1) Pl. 12, fig. 1 n.
(2) Pl. 12, fig. 3 d'.
(3) Pl. 12, fig. 3. 14.
aussi, mais réduit à des dimensions qui le rendent tout-à-fait insignifiant. Les dessins que nous donnons du système circulatoire des Nephtys nous permettront de ne pas en donner ici une description plus détaillée; nous ajouterons seulement que les appendices, auxquels M. Savigny a réservé le nom de branchies, ne sont pas les seules parties des pieds qui, à raison de leur structure, doivent servir à mettre le sang veineux en contact avec l'oxygène dissous dans l'eau ambiante. Le grand lobe membra neux qui garnit le bord de la rame ventrale de chacun des pieds est également vasculaire et propre à des fonctions de cette nature.

§ 11. Chez les Sabelles, le système circulatoire présente dans toute sa longueur encore plus d'uniformité que chez les Nephtys et les Néréides. On y trouve un vaisseau dorsal très grêle, accolé au tube digestif, et recevant au niveau de chaque cloison inter-annulaire une paire de branches transversales qui viennent des parties latérales du corps (1). Au-dessous du tube digestif est un autre vaisseau médian qui est légèrement renflé d'anneau en anneau, et qui fournit à droite et à gauche des branches transversales recourbées en manière d'anse près de leur origine. La face interne des tégumens est garnie d'une multitude de filaments vasculaires qui paraissent être des organes de sécrétion, et autour de la base des pieds on remarque un petit réseau capillaire superficiel qui concourt probablement au phénomène de la respiration; mais les panaches dont l'extrémité céphalique est ornée reçoivent aussi une quantité considérable de sang, et c'est par conséquent avec raison qu'on les regarde généralement comme étant les branchies.

§ 12. Les modifications nombreuses que nous avons déjà signalées dans le système vasculaire des Annelides ne sont pas les seules que nous y ayons rencontrées. Ainsi l'Arénicole, qui ressemble aux Térébelles par le rôle que jouent les branchies dans le mécanisme de la circulation, s'en éloigne encore plus que toutes

(1) Pl. xi, fig 2.
les espèces précédentes, sous le rapport anatomique. Les principaux traits de l'organisation de l'appareil circulatoire de cet animal ont été depuis long-temps indiqués par Cuvier ; et à une époque plus récente, Everard Home s'est occupé du même sujet, quoique avec moins de bonheur que son illustre prédécesseur ; mais les observations de ces deux anatomistes m'ont semblé laisser encore quelque chose à désirer, et ne s'accordent pas assez exactement avec ce que j'ai vu pour que je puisse me dispenser d'entrer ici dans quelques détails.

Vers le quart antérieur du corps de l'Arénicole, on voit de chaque côté de la portion oesophagienne du tube digestif, un ventricule contractile, de forme ovoïde, qui est rempli de sang, et qui fait les fonctions d'un cœur (1). Inférieurement, chacun de ces ventricules donne naissance à un gros tronc vasculaire qui se dirige obliquement en bas et en arrière et gagne la ligne medio-ventrale, où, après s'être réuni à son congénère, il débouche dans un vaisseau ventral analogue à celui que nous avons vu chez tous les Annelides dont nous avons déjà parlé (2). Ce vaisseau médian est situé au-dessus du cordon nerveux et s'étend d'un bout du corps à l'autre. Au niveau de chaque anneau, il fournit à droite et à gauche une grosse branche qui se rend au tubercule pédiforme correspondant, et qui, à commencer du septième segment, pénètre dans la branchie située au-dessus. Ce sont les battemens des deux ventricules mentionnés ci-dessus qui poussent le sang dans le vaisseau ventral, et l'y font cheminer d'avant en arrière jusque dans les branchies, mais là ce liquide reçoit une nouvelle impulsion qui lui est donnée par les contractions de l'organe respiratoire, et, après avoir subi l'influence de l'air, il est ainsi lancé dans les canaux efférents des branchies. Presque aussitôt après leur entrée dans le corps, ces derniers vaisseaux donnent naissance à une branche cutanée qui se porte en arrière et se divise en deux rameaux dont les ramusculles se distri-

(1) Plaque 13, fig. 1 et 15 n.

(2) C'est évidemment ce vaisseau ventral, dont Cuvier a parlé comme régulant tout le long du dos, entre les branchies. (Art. Arénicole du Dictionnaire des Sciences naturelles, t. III, p. 1.)
buient dans chacune des cinq subdivisions de l’anneau correspondant, et s’anastomosent fréquemment entre eux; vers la partie antérieure du corps, les anastomoses des branches supérieures de ces artères se font même d’une manière si directe, qu’il en résulte de chaque côté un vaisseau latéral continu. Les canaux afférents des branchies poursuivent ensuite leur trajet vers la ligne médiane, et, comme l’avait déjà constaté Cuvier, varient dans leur mode de terminaison; ceux des sept dernières paires de branchies débouchent dans le vaisseau dorsal; les autres, au lieu de remonter vers le dos, côtoient les vaisseaux afférents et vont se terminer dans un tronc vasculaire longitudinal accolé à la face inférieure du tube digestif.

Le vaisseau dorsal (1), de même que celui des Néréides, règne d’une extrémité du corps à l’autre, et est simple dans toute sa longueur. Dans sa portion moyenne, il naît de nombreuses branches transversales qui entourent le tube digestif, s’unissent fréquemment entre elles par des rameaux longitudinaux, et s’anastomosent aussi avec le vaisseau intestinal intérieur. Le lacs vasculaire formé par la réunion de toutes ces branches est extrêmement développé, et donne naissance antérieurement à deux veines latérales qui marchent dans un sillon creusé de chaque côté de l’estomac, et se réunissent au vaisseau dorsal immédiatement en arrière des ventricules. Le sang contenu dans le vaisseau intestinal inférieur arrive en grande partie dans ces veines latérales, dont l’extrémité antérieure est très dilatée; le reste est versé directement dans une espèce de sinus formé par leur jonction avec le vaisseau dorsal. Ce sinus communiqué de chaque côté avec les ventricules et se continue antérieurement sous la forme d’un vaisseau médian assez grêle, qui, après avoir donné naissance à deux vaisseaux pharyngiens latéraux et à quatre paires de branches cutanées, abandonne le tube digestif pour s’accoler aux teguments du dos, et se termine en formant autour de la bouche et de la base de la trompe deux anneaux vasculaires d’où naît inférieurement l’extrémité anté-

(1) à fig. 1 et 15, pl. 13.
rieure du vaisseau ventral. Enfin, outre ces vaisseaux nombreux, on trouve aussi de chaque côté du cordon nerveux une petite veine (1) dont les branches s'anastomosent avec celles des artères cutanées latérales et avec des rameaux extrêmement déliés du vaisseau ventral.

Le sang qui a respiré dans les branchies est, comme on le voit, poussé par les contractions de ces organes, et envoyé en partie dans le réseau vasculaire cutané, en partie dans le vaisseau dorsal et en partie dans le vaisseau sous-intestinal; une grande portion du liquide reçu par ces deux derniers vaisseaux circule dans les innombrables rameaux qui, par leurs anastomoses fréquentes, couvrent le tube digestif d’un lacs serré; puis le sang qui a servi de la sorte à la nutrition de ce tube, et qui a fourni les matériaux des sécrétions dont il est le siège, se mêle plus ou moins intimement avec une portion de celui reçu directement par le vaisseau ventral, et ce mélange se distribue en partie à l’extrémité antérieure du corps, tandis que le reste passe dans les deux cœurs pulmonaires d’où il est lancé dans le vaisseau ventral. Ce dernier canal reçoit aussi le sang qui revient de l’extrémité antérieure du corps et du réseau cutané. Enfin le liquide nourricier, ainsi rassemblé de toutes parts, retourne aux branchies d’où nous l’avions vu partir.

Ce mode de circulation a beaucoup d’analogie avec celui observé par M. Dugès dans les Lombrics. Chez ces Annelides, le sang marche d’arrière en avant dans un vaisseau dorsal, et descend en grande partie vers le système vasculaire ventral, à travers des conduits moniliformes qui occupent la même position et remplissent des fonctions analogues aux deux ventricules de l’Arénicole, seulement leur nombre est plus considérable et leur faculté contractile moins circonscrite. Un vaisseau medio-ventral conduit le sang en arrière, et communique avec des branches verticales par l’intermédiaire desquelles ce liquide remonte dans le vaisseau dorsal. (2)

(1) Pl. 13, fig. 15, c.

(2) Voyez Annales des Sciences naturelles, t. xv, p. 302. Une faute d’impression à la ligne 15 pourrait jeter quelque confusion dans la description que l’auteur donne du cours du sang chez
Les observations que nous avons présentées ci-dessus relativement à l’Arénicole, pourront servir aussi à jeter quelque lumière sur les rapports d’analogie qui existent entre les diverses parties de l’appareil circulatoire des Sangues et des Annelides supérieurs. En effet, il existe, comme on le sait, chez les Hirudinés, deux vaisseaux longitudinaux et latéraux, aussi bien qu’un vaisseau médio-dorsal et un vaisseau médio-ventral (1); il ne peut y avoir aucune incertitude concernant les analogies de ces deux vaisseaux médians chez les Annelides supérieurs, mais il n’en aurait pas été de même pour les vaisseaux latéraux si l’Arénicole ne nous en eût présenté des vestiges bien évidents, dans le canal vasculaire latéral qui règne dans la partie antérieure du corps à la base des pieds, et qui est formé par les anastomoses de l’une des branches des artères cutanées, vaisseau qui est parfaitement continu dans le quart antérieur du corps, mais qui cesse de l’être postérieurement, où il est représenté seulement par une série de vaisseaux distincts qui se suivent sur la même ligne sans communiquer librement les uns avec autres.

Un fait digne de remarque et qui se voit chez les Arénicoles, mieux peut-être que chez aucun autre Annelide, est la fréquence des communications que les gros vaisseaux de tous ces animaux ont entre eux, et la continuité du système capillaire. Chez les animaux supérieurs, le sang qui arrive dans une partie du corps revient aussitôt sur ses pas, et chaque organe a ses artères et ses veines bien distinctes; tandis que chez les Annélides, on ne trouve pas d’ordinaire dans un même organe, si ce n’est dans les branchies, deux sortes de canaux circulatoires parallèles traversés par des courans en sens contraire; le sang qui arrive dans un point quelconque du corps continue sa route vers le point opposé, et du moment où un vaisseau se ramifie dans un organe, on ne peut plus distinguer dans ses branches ni artères ni veines, car dans toutes le liquide nourricier suit la même di-

cet Annelide, si les expériences qu’il rapporte un peu plus bas ne levaient toutes les difficultés. En effet; il faut évidemment lire « d’avant en arrière », au lieu « d’arrière en avant », dans la phrase où il est question de la direction du sang dans les vaisseaux ventral et sous-nerveux.

(*) Maquin Tandou, Monographie. — Duges, op. cit. p. 309, etc.
rection, et doit nécessairement agir de la même manière sur les tissus voisins. Il en résulte un phénomène diamétralement opposé à ce qui a lieu chez les oiseaux, où l'air pénétrant partout, le sang commence à redevenir artériel, au moment et dans le lieu même où il s'était changé en sang veineux; car chez les Annelides, le sang devenu veineux dans un point déterminé de l'économie, ne revient pas immédiatement vers l'organe respiratoire, mais continue à circuler dans le système capillaire et se mêle au liquide nourricier destiné aux parties voisines, de telle sorte que les tissus ne sont, pour la plupart, en contact qu'avec un mélange de sang artériel et veineux, c'est-à-dire un sang imparfaitement revivifié par l'influence de la respiration.

Si nous cherchons maintenant à résumer les traits de ressemblance et de dissemblance que nous avons offerts l'appareil circulatoire dans les divers Annelides dont l'étude vient de nous occuper, nous verrons d'abord qu'il existe chez tous ces animaux deux systèmes de canaux sanguins, l'un dorsal et l'autre ventral, et que les principales modifications anatomiques de l'un et de l'autre de ces systèmes dépendent de ce qu'ils sont formés chez les uns de deux moitiés latérales distinctes, dont la réunion sur la ligne médiane, devient chez d'autres espèces, de plus en plus intime, tandis qu'ailleurs cette dualité des vaisseaux longitudinaux disparaît complètement, de façon que les deux canaux symétriques des premiers ne sont plus représentés que par un seul vaisseau impair et médian.

Ainsi chez les Hermelles (1), le système vasculaire dorsal se compose essentiellement de deux vaisseaux longitudinaux occupant les parties latérales du corps et réunis en un tronc médian à leur extrémité seulement. Chez les Eunices (2), ces deux vaisseaux sont intimement accolés l'un à l'autre dans toutes leur longueur et sont représentés antérieurement par un gros tronc impair. Enfin chez les Néréides (3), les Nephtys (4), les Aréni-

---

(1) Pl. 11, fig. 3.
(2) Pl. 12, fig. 2.
(3) Pl. 12, fig. 1.
(4) Pl. 12, fig. 3 et 3°.
coles(1) et les Sabelles(2), cette division bilatérale n'est voit nulle part, et un vaisseau dorsal unique et médian règne dans toute la longueur du corps. Cette tendance à la centralisation se dénote aussi dans les modifications que nous avons signalées dans la disposition des branches intestinales de ce même vaisseau dorsal; car nous avons vu que chez les Arénicoles, les Sabelles, etc., ces branches sont partout paires et symétriques, tandis que chez les Térébelles(3) elles sont impaires et médianes dans la portion antérieure du corps, et que chez les Néréides(4) elles offrent partout cette dernière disposition. Enfin le système vasculaire ventral nous a offert des modifications analogues, car chez les Hermelles nous l'avons trouvé double et symétrique dans la partie moyenne du corps, tandis que chez tous les autres Annelides dont il a été question dans le cours de ce mémoire, il est partout impair et médian.

D'autres différences dans la conformation de l'appareil circulatoire de ces Annelides dépendent d'une sorte de centralisation d'un autre genre. La tendance générale de cet appareil est d'affecter dans chaque anneau du corps une disposition semblable à celle qu'il présente dans les segments voisins, et d'offrir partout la répétition des mêmes parties; mais, chez quelques Annelides nous avons vu que certains vaisseaux ne présentent plus cette uniformité de structure, et acquièrent dans des parties déterminées un mode d'organisation particulier, d'où résulte la localisation de certaines fonctions, qui ailleurs sont réparties d'une manière plus générale dans toute la longueur du corps.

Nous avons vu que le cours du sang a lieu d'arrière en avant dans le système vasculaire dorsal, et dans un sens contraire dans le vaisseau ventral. Ce mouvement est dû, comme chez les animaux supérieurs, à la contractilité de certaines parties du cercle circulatoire; mais le siège de cet agent d'impulsion varie beaucoup. Ainsi, dans les Néréides, le vaisseau dorsal est contractile.

(1) Pl. 13, fig. 1 et 1a.
(2) Pl. 11, fig. 2.
(3) Pl. 10 et 11 fig. 1.
(4) Pl. 12, fig. 1.
Circulation dans les Annelides.

Dans toute la longueur du corps et constitué le principal organe moteur du sang; dans les Eunices, cette fonction est au contraire dévolue aux bulbes des branches transversales du vaisseau ventral; dans les Térébelles, ce mécanisme se complique davantage et il existe deux agens d'impulsion bien distincts: l'un appartenant au système vasculaire dorsal et destiné à pousser le sang dans les branchies, l'autre intermédiaire entre ce système et le système vasculaire ventral, et servant à lancer le sang dans cette dernière portion du cercle circulatoire; le premier de ces agens est le vaisseau dorsal situé dans le quart antérieur du corps, le second est l'appareil branchial lui-même. Enfin chez les Arénicoles, ce sont encore les organes respiratoires qui agissent à la manière d'un cœur sur le sang contenu dans le système vasculaire dorsal, mais le cours de ce liquide dans le système ventral est déterminé par les battements de deux réservoirs contractiles qui méritent à tous égards le nom de cœurs et qui sont les analogues des vaisseaux moniliformes des Lombrics.

On voit donc que dans l'appareil circulatoire des Annelides, la division du travail physiologique est portée à des degrés très divers, et il est probable que lorsqu'on aura multiplié encore davantage les observations sur ce sujet, on découvrira des degrés intermédiaires entre les différents modes de structure que nous avons signalés, ainsi que des exemples d'une diversité d'organisation plus grande et d'une localisation plus complète des fonctions dont ces organes sont le siège.

**Exposition des planches.**

**Planche 10.**

*Fig. 1. La Térébelle nébuleuse (Terebella nebula Montagu), grossie et ouverte par la face dorsale du corps:— a. Ses tentacules locomoteurs;— b. ses branchies;— c. le pharynx;— d. l'intestin dont la partie postérieure est coupée;— e. vaisseau dorsal remplissant les fonctions d'un cœur pulmonaire;— g. vaisseaux longitudinaux de la face supérieure de l'intestin;— h. anneau vasculaire entourant l'oesophage;— i. vaisseau ventral;— j. vaisseau intestinal inférieur;— k. muscles longitudinaux sur lesquels repose le vaisseau ventral, dépourvus des petites appendices sécrétants, dont la face inférieure de la cavité ventrale est couverte;— l. muscles de la face dorsale du corps dépourvus de même;— m. appendices dermiques servant
probablement à sécréter le tube de l'animal; — *n.* organes sécréteurs (générateurs); — *o.* tube servant de dèmeure à l'animal.

**PLANCHE 11.**

*Fig. 1. La Térébelle coquillière (Terebella conchilega), ouverte par le dos:*— *a.* anneau labial; — *b.* b. tentacules; — *d.* peau du dos; — *e.* pharynx; — *f.* intestin; — *g.* muscles longitudinaux de la face inférieure du corps; — *h.* organe glandulaire; — *i.* organes de la génération; — *j.* pattes; — *k.* branches; — *l.* vaisseau tenant lieu de cœur pulmonaire; — *n.* anneau veineux ou sinus veineux entourant l'osophage; — *m.* vaisseau dorso-intestinal; — *o.* vaisseau ventro-intestinal; — *p.* rameau vasculaire latéral.

*Fig. 2. Sabelle,* grossie deux fois: — *a.* a. tentacules branchiaux; — *b.* b. tentacules non branchiaux; — *c.* anneau labial; — *d.* peau du dos; — *e.* estomac; — *f.* intestin; — *g.* pattes; — *h.* vaisseau ventral antérieur; — *i.* les deux vaisseaux ventraux de la portion moyenne du corps; — *l.* portion postérieure du vaisseau ventral, redevenu unique, — *l'* portion abdôminale du même, vue à travers les téguemens; — *m.* branches transversales.

**PLANCHE 12.**

*Fig. 1. Néréide de Harasse,* grossie deux fois et ouverte par le dos (environ le quart antérieur du corps seulement). — *a.* tête; — *b.* antennes mitoyennes; — *c.* antennes externes; — *d.* cirrhes tentaculaires; — *e.* premier anneau du tronc; — *f*, *f*² pieds des 19 premières paires; — *g.* pharynx; — *g'* muscles protracteurs du pharynx; — *h.* oesophage; — *i.* intestin; — *j.* glandes salivaires; — *k.* muscles rétracteurs du pharynx; — *l.* le vaisseau dorsal; — *m* et *n.* vaisseaux récurrents allant se distribuer sur les saes vasculaires (*q* et *p*); — *q.* vaisseau ventral; — *r.* vaisseaux intestinaux medians; — *s.* branches latérales du vaisseau dorsal; — *t.* branches latérales du vaisseau ventral; — *u.* réseau branchial.

*Fig. 2. Eunice sanguienne, Eunice sanguinea,* grossie du double, ouverte par le dos; la partie postérieure du corps n'a pas été figurée; — *a.* antenne médiane; — *b.* antennes mitoyennes; — *c.* antennes externes; — *d.* premier anneau du corps; — *e.* pattes; — *g.* pharynx; — *g'* muscles mandibulaires; — *l.* intestin; — *l'* vaisseau remplissant les fonctions d'un cœur aortique; — *l.* vaisseaux intestinaux supérieurs; — *o.* leurs branches latérales (ou veines branchiales); — *q.* vaisseau ventral; — *t.* ses branches latérales; — *t'* bulbes contractiles de ces branches remplissant les fonctions de cœurs pulmonaires; — *u.* branches; — *x.* vaisseaux sous-cutanés du dos.

*Fig. 3. Nephtys de Homberg,* grossi deux fois et ouvert en dessus la portion antérieure du corps.

Les lettres indiquent les mêmes parties que dans les deux figures précédentes.

*Fig. 3*. Le même ayant le tube digestif détaché et retourné pour montrer le vaisseau intestinal inférieur (*v*) et les deux vaisseaux ventraux (*t*).
**PLANCHE 13.**

Fig. 1. L'**ARENICOLE DES PÊCHEURS** (*Arenicola piscatorum*), ouverte en dessus.

Fig. 1°. La même, vue de profil: — a. trompe; — b. pharynx; — c. muscles rétracteurs; — d. seconde portion du pharynx (ou premier estomac); — e. appendices cœcaux; — f. estomac; — g. intestin; — h. cloisons membraneuses qui entourent la portion abdominale du tube digestif; — i°, i''°, treize paires de branchies; — j. organes de la génération; — k. tubercules setiformes et leurs muscles; — l. appendices sécréteurs de la matière jaune, excrétée par la peau; — m. appendices analogues situés autour de la portion thoracique de l'intestin; — n. le cœur; — o. vaisseau dorsal; — o'. portion abdominale de ce vaisseau; — p. vaisseaux intestinaux latéraux; — q. lacs vasculaire sous-cutané; — r. artères et veines branchiales; — s. veines branchiales se rendant au vaisseau dorsal; — t. vaisseau ventral; — t'. vaisseaux cutanés ventraux; — u. branches latérales des vaisseaux afférents des branchies; — u'. les mêmes moins développées; — x. vaisseau pharyngien latéral; — y et z. anéaux vasculaires labiaux.

**APERÇU DESCRIPTIF DE L'ORGANE AUDITIF DU MARSOUIN (Delphinus phocaena L.),**

Par M. G. BESCHET,

Professeur à la faculté de médecine de Paris, membre de l'Académie des Sciences de l'Institut de France. (1)

Si rien autre chose ne prouvait que le Marsouin appartient à l'ordre des Mammifères, la seule conformation de son oreille interne le démontrerait suffisamment. Sans appareil extérieur, ainsi que tous les Cétacés et plusieurs autres Mammifères, tels

(1) Lorsque nous faisions des recherches sur la structure de l'organe de l'audition des Mammifères, nous avons eu occasion de disséquer plusieurs *Dauphins*, et, particulièrement, le *Delphinus phocaena*, C'est une note, prise dans ces circonstances, que nous avons insérée à la fin de notre mémoire sur l'organe de l'audition chez les mammifères (Voy. *Recherches anatomiques et physiologiques sur l'organe de l'ouie dans l'homme et les animaux vertébrés*, 2° édition, Paris, in-4°, 1836). Nous ne prétendons pas donner ici l'histoire de cet appareil auditif dans tous les cétacés, mais un simple aperçu de l'organe auditif chez le Marsouin. C'est cette même note que nous reproduisons ici, parce que nous pouvons y joindre les figures, qui, lors de la publication de notre mémoire avaient été égarées, et l'on sait que les figures, en anatomi, ajoutent beaucoup à l'intérêt et à la clarté des descriptions. Plus tard, nous pourrons donner une description plus circonstanciée de l'organe auditif des cétacés; mais déjà la science a de grandes obligations aux travaux de G. Cuvier, Camper, J. Hunter, Ev. Home, Mayer, Rudolphi, Monro, Tiedemann, Carus, de Blainville, Buchanan, Fr. Cuvier, Rapp, etc., etc.
que l'Ornithorhynque et l'Échidné, le Marsouin n'a qu'un con-
duit auditif externe, très étroit et allongé, qui vient aboutir à
l'os tympanal, lequel est l'analogue du rocher. L'os tympanal
contient toute l'oreille interne, et lui seul concourt à la forma-
tion du tympan, situé à la partie antérieure et latérale de la
tète, entre la base de l'apophyse zygomatique et la région basi-
laire de l'occipital, entre l'apophyse mastoïde et l'orifice par
lequel le nerf de la cinquième paire sort du crâne. L'os tym-
panal a une direction oblique d'arrière en avant et de dehors
en dedans; sa plus grande étendue, qui est de devant en ar-
rière, a un pouce et demi, dans les deux autres diamètres, il a
dix lignes à un pouce. L'os tympanal se distingue de tous les
autres os du crâne par sa dureté pierreuse, par sa couleur et
par la manière lâche dont il est uni au crâne. En effet, les
autres pièces du crâne sont, pour ainsi dire, confondues les unes
avec les autres pour former un tout continu, tandis que le
tympanal n'y adhère qu'au moyen des ligaments qui lui per-
mettent une certaine mobilité; ce n'est que vers la base de l'a-
pophyse zygomatique qu'il est en contact immédiatement avec
la base osseuse que forme le crâne.

Exterieurement, l'os tympanal est en partie caché par l'extré-
mité postérieure de l'os maxillaire inférieur; intérieurement, il
corrpond à un vaste sinus veineux dont il sera question plus
bas. La substance de cet os est dure, cassante, d'une couleur
jaunâtre, lisse; la matière calcaire y prédomine sur la substance
gélatineuse; elle fait fortement effervescence avec les acides.

Pour procéder d'une manière méthodique dans la description
de l'oreille du Marsouin, nous parlerons successivement :

Du conduit auditif externe ;
De la conformation générale de l'os tympanal ;
De l'oreille moyenne, du tympan et des osselets ;
Et enfin de l'oreille interne et du nerf auditif.

1° Conduit auditif externe. — C'est sans doute dans les Céta-
cés qu'on rencontre le conduit auditif externe le plus étroit;
on parvient tout justement à y introduire la tête d'une petite
épingle; mais ce conduit, tout étroit qu'il est, n'a pas moins
de deux ponces de longueur depuis la peau jusqu'à la membrane
du tympan : il traverse une espèce de lard ou de tissu gras, semi-huileux, qui enveloppe tout le Marsouin. Ce méat auditif ne va pas en ligne droite, mais il est contourné en spirale dans la plus grande partie de son étendue, et surtout vers le milieu. Il s'ouvre au-dehors par un petit orifice arrondi qui offre à peine une demi-ligne de diamètre, et qui se trouve à deux pouces à-peu-près derrière l'oreille. Cet orifice est si peu apparent, qu'il faut précisément savoir où le chercher pour le trouver : il est à-peu-près sur la même ligne que la bouche et l'œil. L'extrémité interne du méat auditif éprouve une légère dilatation ; c'est cette extrémité dilatée qui s'attache aux contours de l'enfoncement dans lequel se trouve la membrane du tympan. Le conduit auditif externe est formé de deux membranes, l'une interne fibreuse, l'autre externe, de nature muqueuse et d'un aspect noirâtre. Parvenue auprès de la membrane du tympan, la membrane muqueuse du méat auditif passe au-devant de la membrane tympanique, la recouvre et en constitue conséquemment le feuillet externe.

Un conduit auditif externe aussi étroit, dépourvu de conque, comme l'est celui-ci, et aussi mal disposé en général, ne doit guère servir à l'audition ; c'est à cela que se rattachent plusieurs considérations. Ce que l'on nomme généralement oreille externe ne paraît convier qu'à l'audition aérienne, et nullement à l'audition aquatique ; aussi s'est-on vainement efforcé de trouver une oreille externe dans les poissons. Le Marsouin, vivant dans l'eau, comme ces derniers, a dû avoir l'organe auditif modifié selon le milieu dans lequel il vit ; mais comme il est en même temps Mammifère, il a fallu que son oreille conservât le cachet de la classe animale à laquelle il appartient. Ainsi, d'un côté, l'oreille externe du Marsouin est presque réduite à rien, et c'est en quoi il se rapproche des poissons ; de l'autre côté, il présente une cavité tympanique parfaitement organisée, et en cela il ressemble à tous les Mammifères.

Il est plus que probable que les ondes sonores qui arrivent à l'organe auditif du Marsouin y arrivent très peu par le méat externe, et cette assertion deviendra évidente quand nous parlerons de la membrane du tympan, qui, tendue et résistante,
n'est pas disposée pour vibrer; la plupart des ondes sonores paraissent arriver au contraire par le pharynx (comme dans les poissons). C'est par là que le chemin est plus court, et que le tympan est ouvert. Mais parlons maintenant de cette disposition du tympan.

2° Os tympanal. — Comme nous avons déjà donné quelques détails sur cet os, nous n'y reviendrons pas; cependant nous nous arrêterons à sa conformation générale, et nous tâcherons de faire entrevoir sous quel point de vue l'os tympanal doit être considéré.

Quand on examine cet os pour la première fois, on est pour ainsi dire dérouté par sa configuration singulière; mais dès qu'on commence à saisir la signification de chaque partie, on reconnaît que la nature est toujours restée fidèle à son plan ou à son type, et que la seule exagération d'une certaine partie nous en a d'abord imposé. La partie ainsi exagérée est ce que l'on nomme la bulle dans les autres Mammifères. L'os tympanal du Marsouin est essentiellement composé de cette bulle et du labyrinthe osseux ou rocher proprement dit. C'est dans l'interstice de ces deux parties que se trouve la cavité du tympan. La bulle et le rocher sont soudés ensemble supérieurement. Le rocher constitue la partie inférieure de l'os tympanal; la bulle forme toute la partie inférieure et externe du même os: cette dernière occupe une bien plus grande étendue que le premier. Ces deux portions continues l'une avec l'autre, en haut et en dehors, comme il a déjà été dit, ne se touchent plus dans le reste de leur étendue. La bulle, après avoir formé toute la surface externe de l'os tympanal, se replie en dedans pour former la surface inférieure et une grande partie de la surface interne; le rocher, après avoir contribué à former presque toute la surface supérieure, forme une portion de la face interne de l'os tympanal; entre cette portion du rocher et la partie de la bulle qui contribue à la formation de la face interne, se remarque un interstice dont la direction a lieu d'arrière en avant et un peu de haut en bas: c'est cet interstice qui mène à la cavité du tympan. Dans les autres Mammifères, cet interstice n'existe point, et la bulle est immédiatement appliquée, et en cet endroit,
contre le rocher : c’est encore une des circonstances qui font qu’on se reconnaît si difficilement dans l’oreille du Marsouin. Une autre cause d’erreur, c’est l’excessive épaisseur qu’offre la bulle à sa partie inférieure et interne; car partout ailleurs où l’on voit des bulles elles sont minces et même transparentes. Qu’on enlève maintenant tout ce qui appartient à la bulle, et l’on verra tout le rocher, le promontoire, les osselets, etc., toutes choses fondamentales, à leur place, bien coordonnées, disposées comme dans les autres Mammifères, et dès-lors l’erreur ou l’illusion aura disparu.

Au résumé, l’os tympanal du Marsouin se distingue en ce qu’il offre une bulle épaisse, compacte, dépassant de beaucoup l’étendue du rocher, et ne fermant point la cavité du tympan, qu’il laisse déhiscente antérieurement.

3° Cavité du tympan. — Faut-il dire que le Marsouin a une cavité du tympan, ou bien faut-il dire qu’il n’en a point? On aurait des raisons pour soutenir l’une et l’autre manière de voir; et voici pourquoi nous venons de dire que la cavité du tympan est déhiscente à sa face interne : eh bien! c’est par cette ouverture qu’entre un prolongement du sinus caverneux pour occuper toute la partie interne de l’os tympanal, en sorte que la cavité tympanique n’est qu’une dépendance du sinus caverneux. Ce sinus acquiert un développement excessif dans le Marsouin; il s’étend depuis les côtés de la glande pituitaire jusqu’à l’intérieur de l’os tympanal; il est formé par la dure-mère, comme partout ailleurs; ensuite il y a une membrane propre, qui est la membrane propre de toutes les veines; parvenu près de l’os tympanal, le sinus se comporte ainsi qu’il suit: son enveloppe extérieure, ou la dure-mère, se fixe aux bords de la fente qui mène dans le tympan, et ne va pas plus loin; la membrane interne du sinus se continue, au contraire, dans l’intérieur du tympan et tapisse toute cette cavité en revêtant les osselets, les muscles, la fenêtre ronde, etc. Il résulte de là que la cavité du tympan est constamment remplie de sang veineux; que les osselets sont baignés par ce sang, qui doit transmettre les vibrations sonores. Nous n’avons pas pu trouver, non plus, de trace d’une trompe d’Eustachio, ou d’une
communication ouverte entre le gosier et le tympan; et cela se conçoit facilement, puisqu'il y aurait hémorragie si une semblable communication avait lieu. C'est le système veineux qui fournit ici la trompe d'Eustachio; le sang joue le rôle qu'on voit remplir à l'air contenu dans le tympan des animaux adultes. Nous trouvons une disposition analogue dans le tympan des fœtus des Mammifères et dans celui des Tortues aquatiques adultes, etc., qui est remplie par une substance gélatineuse. Cette disposition est un des phénomènes les plus curieux sous le rapport des analogies anatomiques; nous ignorons si elle a déjà été indiquée par les physiologistes. On ne pourra plus dire désormais d'une manière absolue que la trompe d'Eustachio est un prolongement de la membrane pharyngienne jusqu'au prè de l'organe auditif, puisque ici c'est la membrane interne du système veineux qui fournit ce prolongement; ou bien si l'on veut persister dans la première définition, il faudra dire que chez les Cétacés il n'y a point de véritable caisse ni de trompe; mais cette dernière manière de voir n'est nullement la nôtre. Nous admettons dans le Marsouin un appareil analogue à l'appareil salpyngo-tympanique des autres Mammifères; seulement nous disons que cet appareil est fourni par le système veineux, et que le rétrécissement correspondant à la trompe est extrêmement court : ce rétrécissement est une fente.

Toute la cavité du tympan est tapissée, comme il a déjà été dit, par la membrane interne du sinus caverneux; cette cavité est allongée d'arrière en avant; elle est plus haute que large, ses parois supérieure, inférieure et externe, sont formées par la bulle; sa paroi interne est formée par la partie du rocher qu'on nomme promontoire. C'est dans la partie supérieure de cette cavité que se trouvent les osselets avec leurs muscles, ainsi que la membrane du tympan.

a. Membrane du tympan. — Espèce de fibro-cartilage en forme d'entonnoir, situé à la partie supérieure et postérieure de la cavité du tympan; on y distingue une partie évasée (base) et un prolongement (tige). La base a une face concave et une face convexe; la face concave est extérieure, et elle paraît en dehors sur le côté externe et supérieur de l'os tympanal, où
elle constitue le fond du méat auditif externe. La face convexe se continue avec la tige; celle-ci se réunit très obliquement avec la base; elle se dirige d'avant en arrière et se termine en s'attachant au corps du marteau. Dans les osseaux, la membrane du tympan est convexe en dehors; elle est concave dans les Mammifères, et cette disposition, propre aux Mammifères, est outrée dans le Marsouin, car ce que nous nommons ici la tige n'est autre chose que le résultat du tiraillage exercé par le marteau sur le milieu de la membrane du tympan (qu'on nous permette cette locution, qui appartient peut-être un peu trop à la mécanique); aussi la concavité de la face externe de cette membrane se prolonge-t-elle jusqu'à une certaine étendue dans la tige.

b. Marteau. — Osselet presque semblable, par la grosseur et la forme, à l'enclume de l'homme: on y distingue un corps, une apophyse grêle, et une articulation au moyen de laquelle il s'unit avec l'enclume. Le corps du marteau donne attache, d'un côté, à la tige de la membrane du tympan, et du côté opposé il reçoit l'insertion du muscle tenseur. Il n'y a qu'un muscle pour le marteau, et nous ferons remarquer ici qu'il n'y en a qu'un non plus pour les autres Mammifères; nous ignorons pourquoi l'on s'est tourmenté pour donner trois muscles au marteau de l'homme, et nous convenons n'en avoir jamais vu qu'un seul, le muscle tenseur.

v. Enclume. — De moitié moins grosse que le marteau. C'est un petit corps osseux, ramassé, présentant deux articulations et deux branches; une des branches est très grêle et plus courte que l'autre, qui constitue à elle seule presque tout le corps osseux, et qui est terminée par une petite facette articulaire au moyen de laquelle l'osselet est en rapport avec le marteau.

Il n'y a point ici d'os lenticulaire; cet osselet est identifié avec l'extrémité de la grosse branche de l'enclume.

s. Etrier. — Encore plus petit que l'enclume; présentant une tête, deux branches et une base. La tête est en rapport avec la branche épaisse de l'enclume; elle donne attache au muscle de l'étrier, les deux branches sont tellement courtes et tellement rapprochées l'une de l'autre, qu'elles ne laissent entre elles
qu’un trou si petit qu’on peut à peine y introduire la pointe d’une épingle. La base est recue dans la fenêtre ovale ; elle est arrondie et concave en dessous.

C. Muscle du marteau ou muscle tenseur. — Assez considérable, formé d’une masse charnue, rougeâtre, qui s’attache à la partie antérieure du rocher, qui se rétrécit successivement et se convertit en un tendon, lequel se fixe au corps du marteau, de sorte qu’en se contractant il doit tendre cette dernière.

z. Muscle de l’étrier. — Moins grand que le précédent ; il est logé dans une petite fossette qui se trouve à côté de la portion dure de la septième paire, et se rétrécit bientôt en un tendon qui va se fixer sur le côté de la tête de l’étrier.

Quand on considère la paroi interne de la caisse du tympan, on y aperçoit le promontoire, les deux fenêtres ronde et ovale, un peu en arrière, la portion dure qui parcourt l’aqueduc de Fallopia ; plus bas, les deux aqueducs, celui du limaçon et celui du vestibule.

4° Oreille interne ou labyrinthe. — Formé d’un vestibule, de trois canaux semi-circulaires et d’un limaçon.

Le vestibule se trouve au milieu ; il est un peu plus petit que chez l’homme et offre les mêmes orifices, c’est-à-dire une fenêtre ovale, des canaux semi-circulaires et une rampe externe du limaçon. Ce que ce vestibule offre de plus remarquable, c’est son aqueduc, qui est très évasé au-dehors, mais qui semble s’obliterer avant de parvenir jusqu’au vestibule ; cependant il est facile d’en suivre les traces jusque dans cette cavité.

Les trois canaux semi-circulaires sont extrêmement étroits ; ces sont les plus petits que nous ayons vus. Le limaçon est à la partie antérieure du labyrinthe ; sa cavité ne fait guère plus d’un tour de spirale. La lame en spirale est bien développée, mais elle partage le limaçon en deux cavités inégales. La rampe externe est beaucoup plus petite, plus étroite que la rampe interne : celle-ci aboutit à la fenêtre ronde ; celle-là s’ouvre dans le vestibule. Immédiatement au-dessous de la fenêtre ronde (qui est fermée par une membrane), se trouve l’aqueduc du limaçon :
 cet aqueduc ne communiquait qu’avec la rampe externe, qui est la plus grande.

Le nerf acoustique tire son origine de la partie latérale du bulbe rachidien, immédiatement derrière la portion dure de la septième paire. Il est très gros, allongé, et gagne, avec la portion dure, le conduit auditif interne. La portion dure parcourt ensemble l’aqueduc de Sylvius. Le nerf labyrinthique s’arrête au fond du conduit auditif interne, pour se diviser en une multitude de petits filets dont une série se rend au vestibule; une autre série, qui est la plus considérable, va au lïmaçon.

**EXPLICATION DE LA PLANCHE 5.**

Fig. 1. Tête osseuse du Marsouin (*Delph. phocena* L.), vue de côté et en dessus, la mâchoire inférieure ayant été enlevée. — *a*, condyle de l’occipital; *b*, région basilaire; *c*, arcade zygomaticque; *d*, voûte palatine; *e*, nerf optique; *f*, nerf maxillaire supérieur; *g*, nerf maxillaire inférieur; *h*, portion dure du nerf facial ou septième paire; *i*, plexus carotidien; *k*, nerf glosso-pharygien; *l*, nerf vague; *m*, nerf hypoglosse; *n*, face externe de l’os tympanal; on en voit un peu la face inférieure; *o*, membrane du tympan.

Fig. 2. Qu’on suppose la paroi externe de l’os tympanal (*n* de la figure précédente) enlevée, et l’on verra tout ce qui est représenté dans la figure 2. La paroi externe, que nous supposons enlevée, n’est autre chose que le représentant de la bulle. — *o*, Membrane du tympan, prolongée en entonnoir jusqu’au marteau; *b*, marteau (voy. le no 1 de la figure 4); *c*, apophyse du marteau; *d*, muscle interne (tenseur) du marteau; *e*, enclume; *f*, étrier, enfoncé dans la fenêtre ovale, de sorte qu’on n’en voit qu’une partie; *g*, muscle de l’étrier; *h*, fenêtre ronde; *i*, promontoire; *k*, portion dure de la septième paire; *l*, aqueduc du lïmaçon; *m*, aqueduc du vestibule.

Fig. 3, représentant l’ostympanal, vu par sa face interne. — *a*, extrémité antérieure; *b*, partie supérieure; *c*, la bulle (lettre *n*, de la fig. 1); *d*, le promontoire; *e*, la fenêtre ronde; *f*, l’aqueduc du lïmaçon; *g*, l’aqueduc du vestibule; *h*, portion dure de la septième paire, ou nerf facial, pénétrant dans le conduit auditif interne, avec *i*, le nerf auditif; *k*, *k*, fente qui mène dans la cavité du tympan, et au moyen de laquelle cette cavité communique avec le sinus caverneux.

Fig. 4, représentant les osselets isolés; *n* 1, le marteau; 2, l’enclume; 3, l’étrier.
Mémoire sur l'organisation des Infusoirs,

Par M. F. Dujardin.

CHAPITRE I.

INTRODUCTION.

Des divers groupes qu'on peut instituer dans la série animale, celui dit des Infusoirs est bien certainement un de ceux dont la connaissance réelle présente le plus de difficultés, non point à cause de la rareté des objets ou de la complexité de leur structure, car on peut les avoir toujours sous sa main et les produire en quelque sorte à volonté, et, d'autre part, leur organisation est si simple, qu'elle se montre tout entière quand on a appris à la voir. Mais les difficultés de leur étude proviennent de ce que, au lieu de les voir directement, nous ne les apercevons que par l'intermédiaz d'instruments plus ou moins parfaits, qui nous les montrent sous un seul point de vue, et traversés par une lumière étrangère susceptible, dans de si petits détails, de produire une infinité de phénomènes d'interférence, de dispersion et de réfraction. Si du moins il était permis de recourir au témoignage de nos autres sens pour rectifier celui que transmet à notre vue un instrument aussi fécond en illusions qu'en enseignemens réels? Mais non, il faut recourir au raisonnement pour démêler la réalité au milieu des phénomènes optiques, et, le plus souvent, ce qu'on prend dans ce cas pour un raisonnement n'est que l'inspiration d'une imagination trompeuse et le résultat d'idées préconçues. Leeuwenhoek, si habile à se servir des microscopes simples qu'il faisait lui-même, apporta dans l'étude des Infusoirs une préoccupation qui lui fit toujours supposer, au-delà de ce qu'il
voyait réellement, un infini de perfection et de complexité. Il s'extasiait avec complaisance devant le tableau, tracé par lui-même, de l'organisation de ces petits êtres ; et, jusque dans la queue ou le filament d'un animalcule spermatique, il voulait admettre des nerfs, des muscles et des vaisseaux. Un tel enthousiasme était bien permis à un homme qui, déjà riche de ses observations anatomiques sur l'homme et sur les animaux supérieurs, venait d'entrer dans une voie si nouvelle pour l'observation, et qui faisait à chaque pas une découverte importante dans le monde microscopique. Leeuwenhoek, en s'égarant, était cependant encore philosophe. Il n'en était pas de même des autres micrographes, de Joblot par exemple, chez qui l'enthousiasme n'était point contenu par une science précédemment acquise : aussi voyait-il dans son microscope des poules huppées, des cornemuses, des poissons d'or et d'argent, et beaucoup d'autres merveilles que leurs dénominations fantastiques firent juger fantastiques elles-mêmes par des naturalistes éclairés, et notamment par Linné, qui, ne pouvant douter, après tant de témoignages, qu'il n'y eût réellement des êtres microscopiques quelconques, les réunit en masse sous le nom trop significatif de chaos.

Hill, Baker, Wrisberg, Goeze et plusieurs autres naturalistes, avaient déjà fourni des notions précises sur les Infusoirs ; Gleichen, tout en poursuivant ses idées systématiques sur la génération, avait enrichi la science de quelques bonnes observations ; mais ce furent surtout les judicieuses recherches de Spallanzani et les travaux persévérants de O. F. Müller, qui firent par conquérir aux Infusoirs un rang dans la zoologie. Ce dernier avait essayé une première fois, dans son histoire des vers marins et fluviales, de classer les Infusoirs ; plus tard, il voulut réunir tous les fruits de douze années d'un travail assidu, dans un grand ouvrage que la mort l'empêcha de terminer entièrement : ce fut O. Fabricius, son ami, qui se chargea de le publier, en le complétant au moyen des notes souvent contradictoires qu'il put trouver dans les papiers de l'auteur, et en établissant, d'après ces notes, des espèces ou même des genres, tel que celui d'Hicnanantopus, que Müller lui-même n'eût peut-
être pas admis. Cet ouvrage, d'ailleurs si riche en observations consciencieuses et tout-à-fait exemptes d'esprit de système, restera comme un des meilleurs recueils pour l'histoire des Infusoires, après avoir fourni des matériaux à beaucoup de nomenclatures. Cependant, des 379 espèces qu'il décrit, et dont 3oo à peine appartiennent à des Infusoires proprement dits, il n'y en a pas plus d'un tiers qu'on ait pu rapporter avec certitude aux espèces aujourd'hui connues. Les 16 genres d'Infusoires (non compris le genre Brachion) de Müller, ont dû nécessairement perdre leurs caractères distinctifs à mesure que le microscope y a fait découvrir de nouveaux détails ; c'est ainsi que les Monades, les Goniums, les Enchelys, etc., ont dû être caractérisés d'une toute autre manière quand on a reconnu les fils ou les lamens qui leur servent d'organes locomoteurs ; cependant, en les circonscrivant convenablement, et en complétant leur caractéristique, beaucoup de ces genres seront encore fort bons à conserver : tels sont les Leucophres, les Kolpodes, les Paramœcies, les Trichodes, les Kerones et les Vorticelles.

En outre des Rotateurs, qui composent tout son genre Brachion et une partie du genre Vorticelle, et se trouvent aussi disséminés parmi ses Trichodes et ses Cercaires, Müller avait compris dans ses Infusoires des objets bien différents, tels que des Bacillaires, des Anguillules, des Distomes, des jeunes Alcyonelles, des lambeaux de branchies de Mollusques, et surtout il avait multiplié à l'excès certaines espèces, en donnant un nom différent au même animalcule en divers états, ou même à des Infusoires devenus incomplets par suite d'une décomposition partielle : c'est là ce qui explique comment il a pu en décrire un si grand nombre.

Bruguières, dans le dictionnaire des Vers de l'Encyclopédie méthodique, avait accepté sans la moindre critique les genres et les espèces de Müller, en y ajoutant seulement quelques espèces de Baker.

Les naturalistes allemands du commencement de ce siècle ne s'occupèrent guère des Infusoires que d'une manière générale, et furent disposés à leur attribuer une structure très simple, et même à admettre leur production spontanée dans les infusions.
Cuvier, adoptant aussi ces idées sur la simplicité de leur organisation, plaça à la fin de son embranchement des Zoophytes, les Infusoires qui contredisent si formellement les caractères généraux de ce groupe d'animaux. Il en avait préalablement séparé, à l'exemple de Pallas, les vraies Vorticelles pour les placer dans l'ordre des Polypes gélatineux; et il avait bien senti la nécessité de séparer les Rotateurs pourvus d'un intestin et beaucoup plus compliqués, des vrais Infusoires, "animaux, disait-il, à corps gélatineux de la plus extrême simplicité, sans viscères, et souvent même sans une apparence de bouche."

Lamarck, en conservant beaucoup trop encore de la classification de Müller, démembra heureusement plusieurs genres; et en particulier celui des Vorticelles, d'où il retira les Rotateurs pour en faire son genre Furculaire; il plaça les Infusoires proprement dits dans la première classe de ses animaux pathiques, qui correspondent aux Zoophytes de Cuvier, et les caractérisa comme des animaux microscopiques, gélatineux, polymorphes, sans bouche distincte et sans organes intérieurs déterminables; mais n'ayant pu les observer lui-même, il laissa subsister dans ses divers genres les rapprochements erronés de Müller, et en fit d'autres tout aussi peu fondés dans son genre Furcocerque. Quant aux Vorticelles, il les plaça avec les Rotateurs dans la seconde classe, celle des Polypes ciliés.

M. Bory de Saint-Vincent, reprenant ce sujet en 1825, divisa les espèces de Müller en 99 genres dont plusieurs ont dû être conservés, comme bien précis, par M. Ehrenberg, qui reproche trop sévèrement peut-être à l'auteur de n'avoir pas toujours observé lui-même les objets qu'il a voulu classer. M. Bory cependant, d'après les faits qu'il a signalés, doit avoir observé beaucoup les infusoirs, qu'il veut nommer des microscopiques, et il a pu contribuer notablement à l'avancement de cette partie de la zoologie. Il partageait les idées de Lamarck sur la simplicité d'organisation des premiers Infusoires et sur leur génération spontanée, mais d'ailleurs il pensait que les organes qu'on n'y peut découvrir pourraient bien exister dans leur transparence, et voyait, dans les différents types de cette classe, le début ou l'ébauche des classes les plus élevées du règne animal.
Schweigger et Oken, en Allemagne, avaient positivement admis la simplicité d'organisation des Infusoirs. M. de Blainville qui, d'abord, leur avait donné le nom bien significatif d'amorphozoaires et d'agastriques, consacra plusieurs années à leur étude; et si des travaux plus importans ne lui ont pas permis de faire connaître beaucoup de faits nouveaux sur leur organisation, du moins, il suit placer le doute partout où il devait être; il indiqua sommairement les retranchemens à opérer plus tard, et, surtout, il sépara définitivement les Infusoirs des animaux rayonnés et des vrais zoophytes.

C'est à l'instant où tous les naturalistes semblaient d'accord sur la question de l'organisation des Infusoirs que M. Ehrenberg est venu, en 1830, étonner le monde savant par l'annonce de ses découvertes successives dans la structure de ces petits êtres, qu'il a dès-lors classés et subdivisés d'après des principes tirés de ses idées, qui nous semblent trop hypothétiques. Ce naturaliste, après avoir fait un voyage scientifique en Egypte et aux bords de la mer Rouge, et après avoir ensuite partagé avec M. de Humboldt, la gloire d'une expédition rapide à travers l'Asie septentrionale, sembla préluder à ses grands travaux ultérieurs en publiant, comme très positifs, des résultats sur la distribution géographique des Infusoirs. Or, ces mêmes Infusoirs d'Asie et d'Afrique, il dut avouer plus tard, dans son grand ouvrage, qu'il n'avait pu suffisamment les étudier, soit à cause de l'imperfection de ses instrumens en Egypte, soit à cause de la rapidité du voyage en Asie. Quant à ses publications sur l'organisation et sur la classification, quoiqu'elles ne nous paraissent point avoir toujours eu pour base des observations sérieuses et une logique rigoureuse, il faut convenir qu'elles auront puissamment contribué au progrès de la science, tant à cause des faits nouveaux qu'elles auront introduits, que par l'impulsion qu'elles auront donnée; mais peut-être devra-t-on reconnaître que M. Ehrenberg, quoiqu'il ait, sans contredit, fait avancer plus qu'aucun autre naturaliste, l'observation des Infusoirs, aura cependant, d'un autre côté, augmenté les difficultés de cette étude.

En effet, d'une part, il annonça, avec la même assurance, des résultats plus ou moins extraordinaires, dont il maintient l'exac-
titude, et d'autres résultats modifiés successivement par lui-même, de telle sorte que les naturalistes occupés du même sujet ont dû, pour connaître sa dernière pensée sur divers points suivre comme à la course ses idées. En même temps aussi, réunissant sous la même dénomination d'Infusoires les Rotateurs, animaux beaucoup plus complexes et qui doivent former un groupe très distinct il s'est donné des arguments peu fondés en faveur de son idée sur la richesse d'organisation des vrais Infusoires; puis, pour grandir en apparence son sujet, il a augmenté le nombre de ses Infusoires polygastriques non-seulement de 200 Bacillaires et Clostériées, qui seront, sans doute, encore regardées comme des végétaux, mais aussi de plus de cinquante espèces douteuses, observées par lui dans ses voyages, et qu'il dit lui-même n'avoir pas suffisamment étudiées. Enfin, pour mettre plus de symétrie dans son travail, il a multiplié les genres et les familles, afin d'avoir deux séries parallèles et complètes de familles, les unes d'infusoires nus; et les autres d'infusoires cuirassés.

Cependant, soit à cause de la difficulté de contrôler ses observations, soit à cause de l'autorité de son nom et bien plus encore du nom de son illustre compagnon de voyage en Asie, soit par un concours de circonstances fortuites, M. Ehrenberg n'a point encore trouvé d'autres contradicteurs que M. Peltier et moi, en France, et, tout récemment, le professeur Rymer Jones, de Londres, qui, lorsque le savant prussien, a présenté son grand ouvrage à la réunion de l'association britannique à Newcastle, a contredit formellement son opinion sur la structure interne des Infusoires, et sur la nature de leurs organes digestifs, disant n'avoir jamais pu apercevoir la moindre trace (the slightest trace) du canal central intérieur décrit par le professeur Ehrenberg, et qui communique avec les vésicules (sacculi), dénommés estomacs.

M. Bory, en 1831, dans le 17e volume du Dictionnaire classique d'histoire naturelle, essaya bien aussi de combattre et les données de M. Ehrenberg sur la distribution géographique des Infusoires, et ses idées théoriques sur la structure interne de ces animaux, mais il paraît avoir renoncé depuis à lui opposer des faits et des observations nouvelles.
J'avais, de mon côté, recueilli tant de preuves de la simplicité d'organisation des animaux inférieurs, et j'avais acquis une entière conviction de la non-existence de l'intestin annoncé par M. Ehrenberg et pris par lui pour base de sa classification, que je n'hésitai pas à contredire son système tout entier, en 1835 (Annales des sciences naturelles, décembre 1835); mais, entraîné par la certitude acquise de plusieurs inexactitudes notoires, j'allai trop loin alors: je crus pouvoir nier l'existence de la bouche chez tous les infusoires, parce qu'il était évident pour moi, comme il l'est aujourd'hui pour M. Ehrenberg lui-même, que la bouche entourée de cils n'existe pas chez les monades, auxquels le savant prussien l'attribuait alors, et parce que ni les Enchelys, ni les Leucophores n'ont la large bouche évasée qu'il leur donne. Ne connaissant encore que ses premiers travaux et croyant qu'il continuait à considérer toutes les vésicules intérieures comme des estomacs, j'attribuai mal-à-propos à toutes ces vésicules le mode de remplissage, qui doit convenir seulement à celles qu'il prend aujourd'hui pour des vésicules séminales (Samenblase). (1)

(1) Dans le même cahier des Annales des sciences naturelles (décembre 1835), pour montrer que mes observations pouvaient mériter autant de confiance que celles de M. Ehrenberg, je disais: «J'ai vu dans beaucoup d'infusoires des détails essentiels qui ont échappé à son habileté, notamment le long filament flagelliforme, qui sert d'organe locomoteur à l'Euglena longicauda; à des cyclides, à des monades, etc. » A cela M. Ehrenberg répond ainsi, dans son Histoire des infusoires, p. 111: «Dujardin, un jeune homme de Paris, qui se prononce très formellement comme antagoniste de l'organisation des Infusoires, croit avoir découvert, en 1836, cette trompe (de l'Euglena longicauda), et apporte son observation comme preuve de ce qu'il est en état de voir plus qu'on ne veut avoir vu. Mais, entre toutes les observations qu'il a publiées, c'est là une de celles, en petit nombre, qui sont exactes, car c'est la confirmation d'une chose déjà connue. Déjà, en 1832, cet organe avait été observé dans les Euglènes et les Monades, et signalé en 1832, 1833 et 1835, dans les mémoires envoyés par moi à l'académie de Paris.»

Il est vrai qu'à la séance du 13 mars 1837, un mémoire de M. Ehrenberg a été remis à l'Institut, avec une note explicative de M. de Humboldt, et que, dans ce mémoire présenté à l'Académie de Berlin, le 21 mai 1835 et imprimé seulement en 1836, des Euglénes et des Monades sont représentées avec une manière de trompe assez épaisse et beaucoup plus courte qui le filament qui existe réellement; mais, comme le sait fort bien l'auteur, ce mémoire, publié à la fin de 1836, n'a pu être connu en France avant le mois de mars 1837, et, dans ses mémoires antérieurs, on ne trouve aucune représentation de cet organe. Bien au contraire, l'Euglena viridis (1er mém. 1830, pl. VI, f. n°, t. 3) et l'Amblyphos, ainsi que l'Euglena sanguinea (2e mém. 1831, pl. II, fig. VII et pl. I, fig. 11) sont représentées avec un peigne ou une
Un peu plus tard (Annales des sciences naturelles, avril 1836) j'ai rectifié ce qu'il y avait de trop absolu dans mon précédent mémoire; en reconnaissant, chez certains Infusoires, l'existence d'une bouche et l'intromission des alièmens dans les vésicules internes ou vâcuoles; mais, quoique le fait du mouvement intérieur de ces vésicules eût été bien vu par Müller et par M. Bory, et que ce même fait ait également frappé M. Rymer Jones, et lui ait fourni, comme à M. Bory, un argument contre la supposition d'un intestin chez les Infusoires, je n'avais encore pu m'en former une idée bien nette, et je croyais que c'était une illusion produite par le mouvement de rotation ou de contraction de l'animalcule, comme le croit encore M. Ehrenberg. D'autres travaux que j'ai publiés depuis, sur les Infusoires, ont en tout pour objet de prouver que la prétendue trompe ne peut être qu'un organe de locomotion, et que, chez la plupart d'entre eux, il n'y a pas de tégument résistant. J'étais bien résolu, d'ailleurs, à continuer de m'occuper de ce sujet, dussé-je être seul à voir les choses autrement que M. Ehrenberg (1). Mais, pour re-
couronne de cils courts. Les Euglénes décrites dans le troisièmemémoire (1832-1833) sont comme pour ménager une transition, figurées (pl. VII, fig. vii et fig. vili) sans aucune espèce de cils ou de trompe; mais, en parlant de l'Euglena deses (3° mém., p. 104) et de l'Euglenu triquetra (p. 105), l'auteur dit avoir nouvellement reconnu que le tourbillon de l'Euglena viri-
dis est produit non par des cils, mais par une trompe, dont il soupçonne aussi l'existence dans les deux espèces décrites. Quoique ce renseignement fût singulièrement placé là, je n'en dois pas moins convenir que j'ai eu tort de n'avoir pas su le trouver.

(1) M. Ehrenberg, dans sa lettre lue le 74 mars 1836 à l'Académie des sciences de Paris, avait cru répondre suffisamment aux observations contradictoires de M. Peltier par l'annonce détaillée de son grand ouvrage, qui devait convaincre tous les naturalistes de la richesse d'orga-
nisation des Infusoires: il ajoutait bien aussi en passant que M. Peltier, pour voir autrement que lui, doit avoir un microscope non achromatique. Ce dernier argument qu'il suppose sans doute très puissant, il ne l'a point épargné dans son grand ouvrage, contre les deux hommes qu'il dit, avec assurance, devoir être ses rivaux contradictoires (die wohl die letzten seyn werden, page 519), contre M. Peltier et contre moi, dont il n'a pas pris la peine de comprendre les mémoires, car il dit (page 136 de son ouvrage die Infusionsthierehen, etc.): «Dujardin a confondu les spectres colorés de son microscope, vraisemblablement non achromatique, avec la coloration (le remplissage, Anfallung) des Infusoires par le carmin et l'indigo, laquelle il prend, ainsi que Peltier après lui, pour une illusion d'optique.»

Au reproche qu'il adresse trois ou quatre fois à mon microscope d'être suranné (nicht mehr zeitgemassen) et non achromatique, il ajoute pour moi le reproche, qui me touche plus directement, de manquer de critique (Mangel an strenger critique, p. 519), ou d'avoir une critique défectueuse (page 362). A cela je ne puis répondre d'aucune manière, car de telles expressions
prendre la question tout entière de l'organisation des Infusoirs, et en particulier celle de leurs organes digestifs, il m'a paru nécessaire d'attendre la publication du grand ouvrage annoncé par le savant micrographe de Berlin, lequel, d'après sa lettre à l'Académie des sciences, devait montrer dans tout son jour l'organisation très compliquée des Infusoirs, «ces animaux qui, disait-il, sont doués de tous les systèmes principaux de l'organisation animale». Les planches, gravées au burin, devaient offrir «dans la plupart des espèces, les organes de la digestion et de la génération, souvent le système nerveux, les paquets de muscles, etc.» (Compte-rendu de l'Académie des sciences, t. 2, p. 267.)

Eh bien! l'ouvrage annoncé depuis si long-temps est arrivé en France il y a deux mois; mais, bien loin de tenir tout ce qui avait été promis, je suis convaincu qu'il aura démontré clairement aux hommes de bonne foi que la question, envisagée à la manière de l'auteur allemand, a rétrogradé depuis 1830, bien plutôt que d'aller en avant. En effet, au lieu de fournir de nouveaux exemples de la structure intérieure, décrite avec tant d'assurance, il se borne à reproduire, au milieu des quelques

quelque nom qu'on leur donne, ne sont point des raisons et ne peuvent nullement éclaircir la question. Peut-être, cependant, me sera-t-il permis de dire quelques mots sur mes microscopes si maîtrisés par M. Ehrenberg. Le premier microscope achromatique que j'ai acheté en 1849, me fut fourni par Dérognat; il était copié sur celui d'Amici et fort bon pour ce temps-là, comme le reconnaît M. Audouin, qui eut la bonté de le vérifier. Ce microscope, en 1832, reçut un nouveau prisme et de nouvelles lentilles fabriquées par Bouquet, et devint ainsi un nouvel instrument bien supérieur. Un autre microscope achromatique, encore meilleur, me fut fourni en 1834, par Ch. Chevalier, qui, dans les années suivantes, me fournit des lentilles de choix, trouvées fort bonnes, en 1837, par M. Trécourt, juge expert en cette matière. Enfin, en 1838, j'ai reçu de Georges Oberhäuser plusieurs assortiments de lentilles, et, depuis deux ans, j'ai moi-même perfectionné mon microscope, en y adaptant un appareil d'éclairage déjà hautement apprécié par plusieurs observateurs, et sur le mérite duquel l'Académie des Sciences a été appelée à se prononcer.

M. Ehrenberg, de son côté, nous apprend lui-même, en divers endroits de ses ouvrages, que ses moyens d'observation sont devenus bien plus puissants dans ces dernières années. Or, ses découvertes fondamentales, qui n'ont ultérieurement reçu aucune extension, relativement à l'intestin des Infusoirs, ont précisément été faites avant 1830, avec un microscope de Ch. Chevalier, assurément moins parfait que ceux de ce même ingénieur, aujourd'hui. Je puis ajouter enfin, d'après plusieurs personnes qui ont eu l'honneur de voir M. Ehrenberg à son passage à Paris, que le microscope de cet habile observateur n'a point été trouvé supérieur à ceux que nous possédons en France.
mille dessins d'Infusaires polygastriques, les dix ou douze figures anciennement données par lui avec la représentation d'un intestin droit ou curvé ; et de plus, à côté de ses figures, données en 1830, de la Leucophra patula, avec une large bouche oblique et un intestin parfaitement distinct, il place d'autres figures faites plus récemment, qui ne leur ressemblent en rien et ne montrent point d'intestin ; dans d'autres, ce prétendu intestin ne se voit qu'en partie, comme une réunion de plusieurs vésicules contiguës et allongées ; ou bien c'est une large bande qui ne se peut comparer à ce qu'on avait annoncé d'abord, ou bien encore, l'auteur déclare que ce qu'il a figuré (voyez Paramé-
cium aurelia, p. 350) n'est qu'une représentation idéale du trajet qu'il a vu suivre aux aliments. Ne doit-on pas être grande-
ment surpris de ce que, d'un si grand nombre d'Infusaires soumis par lui aux investigations les plus pressantes, il n'en puisse citer que onze chez lesquels l'intestin ait pu être suivi ? Et de ces onze encore, cinq sont des Vorticellines, qu'il recom-
nande comme plus propres à montrer un phénomène qu'on doit désirer voir dans les vrais Infusaires bien plus que dans un type si rapproché de certains Polypes. Des six autres, l'un, le Trachelius ovum, est représenté avec un large canal central, droit, d'où partent de minces rameaux anastomosés, et qui n'a aucun rapport, ni avec l'intestin supposé d'abord chez les deux autres Polygastriques, ni avec l'intestin observé dans d'autres animaux : le Chilodon cucullulus et le Stylo-
cyphia mytilus ont une forme d'intestin plus conforme à la première hypothèse, mais encore d'une largeur excessive par rapport à la contracti-
lité extrême qu'on lui attribue pour expliquer sa disparition hors le temps du passage des aliments ; deux seulement ont con-
servé leur intestin de 1830 : ce sont la Leucophra patula et l'Enchelys pupa, confondue alors avec l'Enchelys farci
cmen, qui n'a rien montré de tel ; enfin la dernière espèce est un des Infusaires les plus communs, le Paramœcium aurelia, qui une seule fois a montré à l'auteur tout le trajet de l'intestin, mais dont le dessin, dit-il, est idéal (ideale Zeichnung). Dans des dessins si démesurément grossis, n'est-on pas d'ailleurs en droit de désirer au moins l'indication des organes que suppose l'an-
teur; or, nous ne voyons dans des grandes figures de Bursaires, de Leucophres, etc., longues de deux à trois pouces, absolument rien que le travail régulier de l'instrument du graveur nommé une roulette, instrument inintelligent et qui a pour objet de couvrir de séries de points une surface ; rien, dans ces gravures, n'indique même les granulations de la surface ou de substance intérieure. Dira-t-on, pour les unes, la transparence trop grande a empêché de voir, voudra-t-on, pour d'autres, prétexter le défaut de transparence? Mais si l'on n'a rien vu, on n'a donc été guidé que par des suppositions ou des analogies : il importe de le dire.

Malgré les prétentions de M. Ehrenberg, la question des Infusoires ne peut donc être considérée comme entièrement résolue par lui : j'aurai plus loin l'occasion de discuter ses opinions sur plusieurs points : je vais passer à l'étude de l'organisation des Infusoires, en tant qu'elle peut nous être connue ; mais, préalablement, j'examinerai les causes d'erreur qui ont jusqu'à ce jour exercé une influence plus ou moins grande sur cette étude.

**CHAPITRE II.**

*Des erreurs à éviter dans l'étude des Infusoires.*

Les Infusoires, en raison de leur petite extrême et de leur transparence, ont pu être étudiés seulement au microscope, à l'aide de la lumière transmise à travers les liquides qu'ils habitent ; leur transparence déjà très grande a été encore augmentée par là, et même elle a été rendue presque complète par l'imperfection de certains microscopes, qui, laissant les détails plus diffus, n'ont montré qu'une masse homogène, diaphane, manifestant sa présence uniquement par un contour ombré. Il a dû résulter de là que quelques observateurs n'y ont rien pu distinguer, tandis que d'autres y ont vu tout ce qu'ils ont voulu voir. L'analogie ayant alors été appelée au secours de l'observateur, est venue compliquer d'une foule d'illusions de raisonnement, un sujet qu'au milieu des illusions d'optique on avait tant
de peine à voir distinctement. On peut donc classer sous ces deux titres distincts les causes d'erreur que nous avons à éviter, en ajoutant aux fausses analogies les idées préconçues et les fautes de logique dont les plus célèbres philosophes n'ont point été exempts.

Les idées préconçues ont entraîné les micrographes dans des directions tout-à-fait opposées sur la question des Infusoirés. Pour ceux qui ont cru à la génération équivoque ou spontanée, ces animaux n'ont été que de simples amas glutineux de matière vivante: beaucoup de naturalistes célèbres ont eu cette opinion; mais on doit reconnaître qu'ils ne cherchèrent pas assez dans l'observation directe une confirmation de leurs idées. Pour ceux, au contraire, qui voulaient voir jusqu'aux plus petit-à-petit une représentation également complète des organisations supérieures, une sorte de microcosme, les Infusoirés ont dû être considérés à priori comme des animaux non moins compliqués que les Vertébrés; ce qu'ils ne voyaient pas, ceux-ci l'ont supposé; les autres, n'en ayant pas besoin, n'ont pas même cherché ce qu'ils auraient pu voir.

Une idée préconçue sur la divisibilité indéfinie de la matière a fait admettre à Bonnet, à Spallanzani et à Saussure, la doctrine de l'emboîtement des germes; elle eût pu conduire aussi Spallanzani, comme aujourd'hui M. Ehrenberg, à accorder l'organisation la plus complète aux Infusoirés, car le principe admis par ce dernier, que «les idées de grandeur sont relatives et de peu d'importance physiologique» (1), n'est que la conséquence de la divisibilité indéfinie de la matière; mais le philosophe italien, qui s'élève avec raison contre l'abus de l'argument analogique, n'en voit même pas la nécessité d'accorder un cœur et une circulation au Rotifère, parce que l'idée de cette organisation, dit-il, est une idée particulière tirée d'un nombre défini d'animaux. (2)

La divisibilité indéfinie de la matière, en supposant que ce fut réellement une loi de la nature, ce que d'ailleurs paraissent

(1) Comptes rendus de l'Académie des Sciences, 1, 7, p. 247, 1836.
(2) Spallanzani, Opusc. phys., trad. franç., 1, 11, p. 236.
X. Zool. — Octobre.
contredire une foule de phénomènes physiques ou chimiques, ne suffirait pas pour prouver la possibilité d'une organisation très complexe au-delà d'une certaine limite de grandeur; car on sait que beaucoup de phénomènes physiques ou dynamiques sont considérablement influencés ou même supprimés par des actions moléculaires, quand les corps ou les espaces qui les séparent ont des dimensions trop petites : ainsi, par exemple, le liquide cesse de s'écouler, même sous une forte pression, dans un tube capillaire dont le calibre est suffisamment petit. Dans les animaux dont le cœur est le plus puissant, les derniers vaisseaux capillaires ont au moins \( \frac{1}{10} \) millimètre de diamètre; voudrait-on donc supposer à des Infusoires grandis de \( \frac{1}{10} \) millimètre des vaisseaux de \( \frac{1}{10000} \) millimètre? mais la loi de la capillarité s'opposerait entièrement à une pareille supposition, dût-on même centupler le diamètre de ces vaisseaux. Il est donc bien plus conforme aux lois de la physique d'admettre que dans ces petits animaux les liquides pénètrent simplement par imbibition, comme il est plus conforme aux règles bien comprises de l'analogie de ne pas supposer que le type des organismes supérieurs se puisse reproduire dans les plus petits êtres, puisque nous voyons les éléments de ces organismes, les globules du sang, la fibre musculaire, les vaisseaux capillaires, au lieu de subir un décroissement progressif dans leurs dimensions chez des Vertébrés de plus en plus petits, montrer à-peu-près les mêmes dimensions chez l'Éléphant et chez la Souris, comme chez les articulés nous voyons l'organisme se simplifier bien plutôt que ses éléments décroître de volume.

Ce sont ses idées préconçues sur l'organisation de la matière qui ont empêché M. Bory de connaître la vraie signification des globules ou vésicules contenus dans les Infusoires.

La méthode analogique est si bonne en elle-même, que nous devons saisir avec empressément toutes les occasions d'en faire usage : c'est à elle que nous sommes redevables d'une grande partie de nos connaissances physiques, soit directement, soit indirectement, quand elle nous ramène à l'observation pour y chercher la preuve des résultats qu'elle a fait pressentir; mais, comme le dit Bonnet, « quand l'analogie est trop imparfaite
nous devons nous défier beaucoup des explications et des hypothèses qui l'ont pour fondement ». Or, que l'on prenne pour point de départ l'organisation de l'homme et des carnivores, et que l'on descende toute la série du règne animal, ne verra-t-on pas clairement l'analogie s'affaiblir à mesure qu'on s'éloignera du point de départ ? Ainsi, par exemple, quoique le type général de l'organisation se reconnaît encore dans tous les Vertébrés, ne trouve-t-on pas déjà chez les Poissons des organes et même des fonctions encore incomplètement déterminées ; chez les Molusques, et bien plus encore chez les Articulés, l'analogie primitive devient plus difficile à suivre ; chez ceux-ci surtout, les mêmes fonctions, si elles existent, peuvent se montrer en sens inverse, et des contrastes deviennent alors plus frappants que des analogies.

Chez les Radiaires, chez les Acalèphes, et les Helminthes enfin, l'analogie qu'on voudrait invoquer avec les animaux supérieurs sera le plus souvent trompeuse ; et si l'on doit regarder comme de simples jeux de l'esprit les suppositions qui ont fait admettre à certains naturalistes des yeux véritables aux Méduses, aux Astéries, etc., là où ces animaux présentent des points diversément colorés ; à plus forte raison ne doit-on pas accorder une importance réelle aux déterminations arbitraires des prétendus organes des Infusoires ; déterminations faites à la seule inspection de certaines parties plus ou moins translucides, plus ou moins grumleuses, mais dont les fonctions ne peuvent être prouvées par aucune connexion réelle. Dans ce cas, en effet, c'est à l'auteur d'une telle supposition à en prouver la justesse d'une manière complète, et ce n'est point aux autres à prouver contradictoirement quelle doit être la vraie signification des parties que leur petite ou leur indépendance, ou que l'indécision de leur forme rendent également aptes à recevoir une dénomination quelconque.

D'autres erreurs de raisonnement ont dû provenir d'inductions purement rationnelles ou qui n'étaient pas appuyées sur des faits, ou qui s'appuyaient sur des faits mal interprétés. C'est ainsi que de quelques observations superficielles on a voulu conclure que les Infusoires sont dirigés par un instinct ou par
une sorte d'intelligence, et, conséquemment, qu'ils ont un système nerveux, et, conséquemment encore, tous les autres systèmes d'organes qui accompagnent ordinairement celui-là. Mais toutes les prétendues preuves d'intelligence ou d'instinct disparaîtraient sans doute devant un examen attentif, comme les preuves de l'accouplement des Infusoires disparurent devant la belle observation faite par Saussure de leur division spontanée ou fissiparité. C'est ainsi qu'une fausse interprétation de la structure du Volvox fournissait aux philosophes de la fin du dix-huitième siècle une preuve en apparence irréfragable de l'emboîtement des germes.

Quant au raisonnement de Sennebier, qui, s'appuyant sur des idées religieuses, dit que le nombre des êtres sensibles ne saurait être si grand, si le nombre des sensations agréables qu'ils éprouvent ne croisait pas dans cette proportion, et qui veut conclure de là à une perfection indéfinie des plus petits êtres ; ce raisonnement et beaucoup d'autres semblables, nous devons, je crois, quelque respectable qu'en soit le principe, les exclure d'une science positive. Il est enfin d'autres erreurs de raisonnement contre lesquelles on ne saurait trop se prémunir : elles consistent, chez les partisans de l'organisation indéfinie des plus petits êtres, à tirer des conséquences certaines de prémisses incertaines, ou bien à généraliser d'une manière affirmative ce qu'on a présenté dubitativement dans tous les cas particuliers, comme si une somme de doutes pouvait produire une affirmation.

Les erreurs provenant du microscope sont de deux sortes : les unes ont trait à l'épaisseur des parties filiformes et des contours ; les autres portent sur la distinction des pleins ou des vides, des creux ou des saillies ; ce sont les plus importantes, car elles conduisent, bien plus que les premières, à des notions erronées sur la structure des objets soumis à l'observation microscopique : faute de savoir s'en préserver, on a pris les uns pour les autres des filets solides ou tubuleux, des vésicules remplies d'eau au milieu du corps des animaux, ou occupées par un liquide plus dense au contraire, des granules saillants et des cavités, des lignes en relief et des stries creusées à la surface,
etc. Une connaissance suffisante des lois de la réfraction devra toujours prévenir cette cause d'erreurs; mais, le plus souvent, on sera en état de l'éviter, si l'on a examiné comparativement au microscope des gouttelettes d'huile et des petites bulles d'air dans l'eau, ou simplement des gouttelettes d'eau enchâssées dans les plus grosses gouttelettes d'huile (1); et si l'on a remarqué comment se comportent ces divers globules quand on éloigne ou qu'on rapproche l'objet et l'objectif du microscope.

En effet, alors, on voit les globules dont la réfringence est moindre, c'est-à-dire les bulles d'air et les gouttelettes d'eau par rapport à l'huile, devenir plus obscurs à mesure qu'on les éloigne au-delà de la distance focale, et devenir au contraire de plus en plus clairs à mesure qu'on les rapproche en deçà de la même distance focale, tandis que les globules les plus réfringents, c'est-à-dire les gouttelettes d'huile, présentent des phénomènes optiques tout-à-fait inverses; ils paraissent plus obscurs à mesure qu'on les rapproche de l'objectif, et deviennent de plus en plus brillants si on les éloigne. Les globules les plus réfringents agissent donc comme des lentilles convexes qui concentrent la lumière incidente entre le globule et l'objectif, et les globules les moins réfringents agissent comme des lentilles concaves qui rendent divergente la lumière incidente, comme si elle partait d'un foyer virtuel situé au-delà du globule ou du même côté que la lumière incidente. C'est aussi comme ces deux sortes de lentilles qu'agissent les différents globules quand on dispose la lumière incidente de manière à former l'image de quelque objet extérieur. (2)

(1) On prépare aisément une émulsion convenable pour cette observation, en agitant dans un flacon un peu d'huile avec de l'eau gommée ou sucrée. On peut faire l'expérience d'une manière encore plus simple et plus satisfaisante en agitant entre ses dents et ses lèvres un peu de salive et une goutte d'huile; l'émulsion ainsi obtenue présente des globules nombreux d'huile et d'air presque également petits, que l'on ne distingue pas d'abord les uns des autres, mais en variant la distance du porte-objet, la différence se manifeste aussitôt. Quelques gouttes d'huile plus volumineuses, sont parsemées de petites gouttelettes d'eau, qui jouent à leur égard le rôle de lentilles concaves ou de vacuoles.

(2) La différence des globules plus ou moins réfringents que le milieu qui les contient est surtout facile à constater de diverses manières avec l'appareil d'éclairage que j'ai présenté récemment à l'Académie des sciences. Cet appareil, en effet, qui sert à porter le foyer de la lumière
On conçoit, d'après cela, qu'il sera toujours possible de reconnaître si réellement des globules, à l'intérieur des Infusoires ou des autres animaux microscopiques, sont plus ou moins réfringens, et dans certains cas aussi, plus ou moins denses que la substance charnue environnante; s'ils sont remplis par de l'huile, par des matières albumineuses, ou simplement par de l'eau: dans ce dernier cas, ils font l'effet d'autant de lacunes sphériques vides, puisque les rayons de lumière en le traversant sont moins réfractés que dans le milieu environnant, c'est pourquoi j'avais proposé en 1835 de nommer vacuoles de semblables cavités remplies d'eau, dans les Infusoires et dans la substance glutineuse charnue de divers animaux inférieurs: cette appréciation convenable des effets de la réfraction dans les objets microscopiques, permettra aussi de décider si un filament est creux ou plein; si un globule sanguin est vésiculeux, ou simplement renflé ou s'il est au contraire déprimé comme l'avaient bien démontré Hodgkin et Lister; si un trou apparent existe réellement ou si l'on n'a qu'un globule plus diaphane ou une vacuole à considérer.

C'est à la diffraction que doivent être attribués les illusions relatives au diamètre des corps très petits et aux contours des autres. Quand la lumière illuminante n'est pas convenablement dirigée sur l'objet, elle produit sur tous ses contours des franges quelquefois multiples, qui peuvent servir d'abord à le trouver aisément dans le champ lumineux du microscope, mais, qui empêchent d'avoir une idée bien précise de son épaisseur ab-

illumineante sur le point même à observer, pouvant seindre dans le champ du microscope l'image de quelque objet extérieur, les divers globules reproduiront cette même image droite ou renversée, suivant la distance de l'objectif et du concentrateur. Ainsi, quand le foyer de la lumière illuminante sera, par l'abaissement du concentrateur, porté au-dessous des globules, les plus réfringens de ceux-ci, suffisamment éloignés de l'objectif, donneront une image renversée par ce qu'ils formeront l'effet d'une lentille convexe également éloignée de l'objectif du microscope et de l'image formée au foyer du concentrateur. Les moins réfringens, au contraire, suffisamment rapprochés de l'objectif feront voir, seulement diminuée, l'image formée primitivement par le concentrateur.

Si le foyer du concentrateur est porté un peu au-dessus des globules, alors les plus réfringens changent peu l'image qui se trouve naturellement portée à leur foyer, et les moins réfringens jouant tout-à-fait le rôle de l'objectif concevant de la lunette de Galilée, donnent l'image dans une position inverse et beaucoup plus rapprochée du concentrateur.
solue et souvent même des détails de sa structure. Cet inconvénient augmente considérablement avec le pouvoir amplifiant, et c’est ce qui explique pourquoi les précédents observateurs ont vu le filament des Zoospermes si volumineux. Un diaphragme trop étroit interposé sur le passage de la lumière, augmente beaucoup ses franges et l’on ne peut s’en débarrasser entièrement qu’en amenant comme je l’ai fait, au moyen de plusieurs lentilles achromatiques, le foyer de la lumière illuminante sur l’objet même de manière qu’elle paraîse en part. Alors sans doute, l’objet n’ayant plus ses contours aussi largement ombrés, paraît d’abord trop pénétré de lumière, et plus difficile à distinguer, mais quand on s’est habitué à le voir ainsi, on y découvre des détails qu’on n’eut pas vus par un autre moyen.

**CHAPITRE III.**

*Substance charnue des infusioires. — Diffluence. — Sarcode.*

Les infusioires les plus simples comme les Amibes et les Monades se composent uniquement, au moins en apparence, d’une substance charnue glutineuse homogène, sans organes visibles, mais cependant organisée, puisqu’elle se meut en se contractant en divers sens, qu’elle émet divers prolongements et qu’en un mot elle a la vie. Dans les Infusioires d’un type plus complexe on voit d’une part, des granules de diverses sortes, des matières terrestres engagées accidentellement et même des cristaux de sulfate ou de carbonate de chaux, qui paraissent s’y être formées successivement ; d’autre part, des globules intérieurs, ou des masses ovalaires plus ou moins compactes, et des vésicules remplies d’eau et de substances étrangères ; enfin des cils ou des prolongements filiformes de différentes sortes, et quelquefois une apparence de tégument réticulé, ou une cuirasse plus ou moins résistante. Mais toujours la substance charnue glutineuse, paraît en être la partie essentielle. Elle peut être étudiée dans les infusioires vivans (A) lorsqu’ils se sont aggluti- nés avec d’autres corps (A—a) ou lorsqu’ils sont accidentellement déchirés en lambeaux (A—b), elle peut être étudiée également
Sur les Infusoirés.

dans les infusoirés mourans (B) soit qu'ils se décomposent par
diffusion (B—a), soit qu'ils fassent exsuder hors de leur corps
cette substance, dans un état d'isolement presque parfait (B—b).

(A—a). Les expansions des Amibés, des Difflugies et des
Arcelles comme celle des Rhizopodes ne sont formées que d'une
substance glutineuse vivante, sans fibres, sans membranes exté-
rieures ou intérieures (1). Cela est prouvé suffisamment par la
faculté qu'ont ces expansions de se souder et de se confondre
entre elles ou de rentrer dans la masse commune qui en produit
de nouvelles sur un point quelconque de sa surface libre. Peut-
être pourrait-on prétendre que cette soudure n'est qu'apparente
et qu'il n'y a là qu'agglutination temporaire de deux filaments
ou de deux expansions qui n'en sont pas moins distinctes; ce
serait alors les mucusités de la surface, ou bien mieux ce ser-
raient des petits organes invisibles, qui détermineraient l'agglu-
tination; mais pour quiconque aura vu ces objets il n'y aura plus
d'équivoque; et les particularités qu'on ne peut suffisamment
d'écrire sur ces soudures et sur les mouvemens des expansions
au-dessus ou au-dessous, n'échapperont pas à l'œil de l'obser-
vateur et ne lui laisseront pas le moindre doute à ce sujet.

C'est surtout sur les Rhizopodes que le phénomène est facile
à observer. Les expansions filiformes de ces animaux, qui ont
tant de rapports d'organisation avec les Difflugies (2), se soudent

(1) Ce fait de l'absence des téguments chez des animaux inférieurs, qu'il me paraît si impor-
tant de voir admettre définitivement dans la science, a été constaté de la manière la plus for-
melle par des observations de M. Pelletier sur les Arcelles, communiquées à la Société philos-
tique et publiées dans le journal l'Institut, 1836, n. 164, p. 209.

(2) Après avoir parlé des Arcelles à la page 135 de sa Traité des Infusoirés, M. Ehrenberg
a consacré une note à la critique de mes recherches sur les Rhizopodes, jugeant sans doute conve-
nable d'attaquer l'exactitude de toutes mes observations, pour infirmer la valeur de mon opinion
sur ses propres découvertes. Il prétend que je n'en ai pas connu le caractère physiologique, parce
que je n'ai pas fait comme M. Ehrenberg pour les Monades, la description de la bouche entourée
de cils, des estomacs, des organes génitaux, des nerfs, etc. « Moi-même dit-il (p. 136), j'en ai
recueilli beaucoup dans le sable et sur les curaus de la Mer-Rouge et de la Méditerranée, et je
crue (esalubilé) aussi, en 1823, reconnaître un petit animal avec des tentacules multiples (6-8)
seulement dans les cellules marginales du Nautilus suezensis, mais je les considérai comme vo-
sins des Flustres ». Sans songer à l'analogie des Gromies qui n'ont qu'une cavité simple, et des
Milholes qui ont plusieurs chambres, il veut conserver à ces animaux le nom de Polythalamies,
parme que le nom de Rhizopode a déjà été employé en botanique. Il doit pourtant savoir mieux
quand ils se rencontrent, et leur soudure se propage d'avant en arrière, en produisant une sorte de palmure, une lame étendue entre les deux filaments, comme la membrane, qui unit les doigts des Palmipèdes et des grenouilles (voyez Annales des Sciences naturelles, décembre 1835). Si cette palmure était le résultat d'une simple agglutination des expansions, on ne la verrait que là où deux expansions se séparent : mais, puisque, au contraire, elle se montre en avant de la soudure, qui se propage, on n'y peut voir qu'un effet de la fusion de deux parties d'une même substance visqueuse. Mais, m'a-t-on dit, pourquoi, si les expansions d'un Rhizopode, d'une Diffugie ou d'une Amibe, se peuvent soudier ensemble sur le même animal, pourquoi celles de deux animaux qui se rencontrent ne se soudent-elles pas aussi ? Et, en effet, comme M. Peltier l'a bien observé, deux Arcelles qui se rencontrent, se touchent sans se soudier. A ce pourquoi, comme à tous ceux qui portent sur l'essence de la vie dans les animaux, je serais fort embarrassé, je l'avoue, pour faire une réponse satisfaisante. (2)

Les divers Infusores appartenant au type des Monades, c'est-que personne que, si ce nom a été en effet donné à quelques mucor, il n'a point été adopté par les mycologues, tels que Fries, qui font autorité. Il termine en disant : « Je trouve un puissant argument contre l'opinion de Dujardin, en ce que les Polythalames possèdent une coquille calcaire, et qu'il n'y a encore jusqu'à présent aucun infusoire se formant un test calcaire, mais bien des bryozoaires. » On pourrait répondre à M. Ehrenberg que des animaux d'une même famille, parmi les zoophytes et que les éponges notamment, soit qu'on en fasse un type à part, soit qu'on reconnaisse l'analogie de leurs parties vivantes avec les Amibes, présentent, chez des espèces assez voisines, des sécrétions cornées, calcaires ou siliceuses. Mais les faits, si absurdes qu'ils paraissent d'abord, valent mieux que les arguments. Or, tous les naturalistes français qui ont vu avec moi les Rhizopodes vivants, savent à quoi s'en tenir sur ce sujet : il en sera de même désormais pour tous ceux qui, au lieu d'argumenter, voudront prendre la peine de recueillir des Milioles, des Vorticaires, des Stomates, des Céramides, des Ascidies, des Vériformes, des Céphalosporides, des Vériformes, des Haplocorallimies, des Polymegithes, des Ascidies, des verrues de la Corallina rubens, et de se rendre sur les côtes, où elles se rencontrent en cadavres. Je rappellerai seulement qu'il suffit de mettre dans des flacons avec de l'eau de mer, le réduit du lavage des corallines, débarrassé d'un excès de limon, pour voir, au bout de quelques heures, ces petits animaux s'élever le long des parois au moyen de leurs expansions ramifiées, qui justifient si bien le nom de Rhizopodes.

(2) Entre des animaux primitivement séparés, on n'a point observé, d'une manière positive, de soudure organique. Je crois que les soudures des polypes sont le résultat de la gemmation et non le produit de la réunion de plusieurs animaux ; si les jeunes Ascidies composées, qu'on a vues nager librement ne sont pas déjà, comme je le crois, des réunions de plusieurs jeunes animaux, ce dont on a la preuve pour les Botrylles, je ne crois pas que ce soient des animaux primitivement séparés, qui se sont soudés pour former des amas, mais bien plutôt
à-dire ayant le corps nu, de forme variable, sans bouche, sans tégument et sans cils vibratiles, sont susceptibles de s'agglutiner temporairement, soit entre eux, soit à la plaque de verre du porte-objet : il en résulte des prolongemens irréguliers, qui s'allongent à mesure que l'animalcule s'agitent jusqu'à ce que, leur adhérence cessant, ils restent comme une quene, qui se raccourcit, en se contractant peu-à-peu, et finit même par disparaître. Ces prolongemens accidentels sont quelquefois aussi déliés que les filaments moteurs. Dans tous les cas, ils ont eux-mêmes une certaine motilité. Ce sont des prolongements de cette sorte qui unissent des Monades, pour en faire ces combinaisons que Gleichen et d'autres ont nommé des boulets rames, des jeux de la nature, etc. Ce sont eux aussi qui donnent aux Monades de certaines infusions, des caractères qu'on a crus suffisants pour établir des genres, mais qui n'ont rien de constant. Dans ces prolongements encore, on ne voit aucunes fibres, aucunes traces d'une organisation déterminée, et, en effet, on concevrait difficilement comment un corps, soutenu par des fibres et renfermé dans un tégument résistant, pourrait s'allonger et s'étirer presque indéfiniment dans tous les sens : ils concourent donc encore à prouver, chez les Infusoirés qui les produisent, une extrême simplicité d'organisation. Il faut bien faire attention d'ailleurs que, en niant dans certains animaux la présence d'un tégument propre, je ne prétends pas du tout nier l'existence d'une surface ; j'admettrai même volontiers que cette surface peut, par le contact du liquide environnant, acquérir un certain degré de consistance comme de la colle de farine ou de la colle de gélatine qu'on laisse refroidir à l'air, mais simplement de cette manière, et sans qu'il se soit produit une couche autrement organisée que l'intérieur, sans que cette surface ait acquis, par le seul fait de sa consolidation, des fibres, un épiderme, des bulbes pilifères, ou seulement une contractilité plus grande ; et encore, si cette surface est réellement plus résistante, ce n'est pas, du moins sensiblement, chez les Monades et les Amibes.

que ces amas proviennent d'une gemmation continue, puisqu'on trouve toujours, dans la même masse, des individus de tous les âges. Quant aux Crustacés parasites et aux Entozoaire s et ils n'ont point de communication organique réelle avec l'animal aux dépens duquel ils vivent.
F. Dujardin. — Sur les Infusoirs.

Ici encore se présente une question que je ne me flatte pas plus de résoudre que celle de la non-soudure des Arcelles. Comment se produit l’agglutination des Monades aux corps étrangers? Est-elle subordonnée à la volonté de ces petits êtres? Je ne voudrais pas même à ce sujet entrer dans une discussion sérieuse sur la volonté, sur le moi des Infusoirs, comme l’ont fait pourtant des philosophes célèbres. Il parait toutefois qu’une agglutination du même genre et vraisemblablement involontaire se produit chez des Kolpodes vivant très nombreux dans des infusions. Il m’est arrivé souvent de voir deux ou trois de ces animalcules agglutinés d’une manière fortuite, les uns par telle partie, les autres par une partie différente, et nageant en bloc dans le liquide jusqu’à ce qu’ils se détachassent, sans qu’on pût soupçonner là rien d’analoge à un accouplement.

— (A—b) Les Infusoirs en voie de multiplication par fissiparité ou division spontanée, et mieux encore ceux qu’un accident a dilacérés, montrent la substance charnue, étirée, transparente et sans traces appréciables d’organisation intérieure. Il m’est arrivé fréquemment de voir cela sur des Infusoirs déchirés et déformés de la manière la plus bizarre, quand, prenant un petit paquet de conserves, je le comprimais à plusieurs reprises sur une lame de verre, pour en exprimer l’eau, que je voulais explorer. On y arrivera plus sûrement encore, en laissant tomber brusquement sur une goutte d’eau très riche d’infusoire une lame mince de verre, qu’on relève ensuite, ou enfin en appuyant un grand nombre de fois, à plat sur le verre, une aiguille à travers la goutte d’infusion. Ce sont surtout les Trichodes et les Kerones (Oxytricha pellionella, Kerona pustulata), qui se prêtent le mieux à cette opération. Les déformations qui en résultent ont donné lieu à l’établissement de plus de trente espèces de Müller; car les vrais Infusoirs, déjà si remarquables par leur fissiparité, ont la propriété de continuer à vivre de quelque manière qu’ils aient été mutilés, pourvu que le liquide n’ait pas changé de nature, soit par l’addition de quelques nouveaux principes, soit par la privation d’oxygène. Il est même extrêmement probable que, si, malgré leur petitesse, on pouvait parvenir à les couper en morceaux, chaque partie continuerait à vivre et
deviendrait un infusoire complet : c’est ce que démontrent les fragmens qui, restant après la diffusione presque totale d’un infusoire, recommencent à nager dans le liquide, si on ajoute une goutte d’eau, et mieux encore l’exemple d’une Kerone pus-tulata (pl. 14, fig. 1), qui s’était accidentellement trouvée partagée presque complètement en trois fragmens vivant en commun et nageant en tournoyant autour de la partie moyenne. On doit remarquer que les parties, ainsi mises à découvert par une déchirure, et qui évidemment n’ont pas de tégument, ne paraissent pas différer, quant à leur aspect extérieur du reste de la surface : elles sont plus diaphanes; mais elles ne montrent ni moins de fibres, ni plus de traces de l’intestin et des organes intérieurs.

—(B—a). Un des phénomènes les plus surprenants que l’on rencontre dans l’étude des Infusoires, c’est leur décomposition par diffusione. C’est en même temps l’un de ceux qui tendent le plus à prouver la simplicité d’organisation des Infusoires. Müller l’avait bien vu dans une foule de circonstances : il l’exprime par les mots effusio molecularum, effundi ou dirumpi ou solvi in molecules, diffluere, efflari, etc. Il avait été extrêmement surpris de cette singulière décomposition d’un animal vivant. Tantôt il a vu des Infusoires au seul contact de l’air se rompant et se répandant en molécules, ou bien arriver au bord de la goutte d’eau entraînant une matière muqueuse qui semblait être le principe de leur diffusione; d’autres, traversant avec vitesse la goutte d’eau, se rompaient et diffluaient tout-à-coup au milieu de leur course (Animalcula infusoria, præf. p. xv). Il décrit ainsi la diffusione de l’Encelis index, p. 38. L’animalcule, s’étant échoué sur la rive et ayant pris une forme ovale ventrue, se décomposa depuis l’extrémité antérieure jusqu’au tiers de sa longueur en molécules, qui, au lieu de se répandre des deux côtés, comme chez les autres Infusoires, s’échappaient en colonne droite, comme la fumée d’une cheminée. Le reste du corps, au lieu de diffuser de même, s’échappa au milieu du liquide, et, recommençant une nouvelle vie, compléta bientôt une forme sphérique. Il dit aussi (p. 106) avoir vu le Kolpoda meleagris se
résoudre en molécules jusqu'à la sixième partie, et le reste se remettre à nager, comme s'il ne lui fût rien arrivé. Dans vingt autres endroits (p. 100, 109, 215, 270, 290, etc., etc.), il décrit avec admiration la diffusione des infusoires, commençant à une extrémité et se continuant sans interruption jusqu'à la dernière particule qui, l'instant d'avant sa décomposition, agitait encore ses cils vibratiles, pour chasser au loin les molécules qui se sont détachées d'elle.

Si j'ai cité Müller, ce n'est pas faute de pouvoir citer des observations qui me soient propres; mais celles de l'auteur danois sont tellement exemptes d'esprit de système, et ont un tel cachet de sincérité, qu'on ne peut, je crois, leur refuser une croyance entière. J'ai vu moi-même nombre de fois la diffusione des infusoires, c'est-à-dire qui sont susceptibles de la montrer, c'est-à-dire qui sont dépourvus de téguments plus ou moins résistants, tels que les Trichodes et les Kérones, tandis que les Paramécies, les Vorticelles et les autres Infusoires, dont la surface est réticulée, offrent un autre genre de décomposition, qui sera décrit plus loin. On la détermine très facilement, en approchant du porte-objet une barbe de plume trempée dans l'ammoniaque, et l'on peut alors suivre commodément sa marche. L'animalcule s'arrête; mais il continue à mouvoir rapidement ses cils; puis tout-à-coup, sur un point quelconque de son contour, il se fait une échancrure, et toutes les parcelles provenant de cette décomposition partielle sont chassées au loin par le mouvement vibratile. L'échancrure s'augmente sans cesse jusqu'à ce qu'il ne reste plus que l'une des extrémités, qui disparaît à son tour, à moins qu'on n'ajoute une goutte d'eau fraîche, qui arrête tout-à-coup la décomposition et rend la vie au reste de l'animalcule. La même chose s'observe par suite de l'évaporation progressive, quand on laisse la goutte d'infusion à découvert sur le porte-objet, comme le faisait Müller, au lieu de la recouvrir d'une lame mince, de verre poli. Dans ce dernier cas, on voit même mieux l'effet d'une affusion d'eau fraîche.

Cette diffusione, cette dispersion des molécules sans que l'animalcule meure tout entier, M. Ehrenberg, qui l'a fort bien
vue (1), la regarde comme un phénomène de reproduction : c'est la ponte, et les granules sont les œufs. Nous discuterons plus loin cette opinion ; pour le moment, je dois dire seulement que les granules en question, qui sont de plusieurs sortes, paraissent être pour la plupart étrangers aux phénomènes de vitalité des Infusoires. Les uns sont évidemment des particules inertes ou organiques avalées par l'animalcule pendant sa vie ; les autres sont des concrétions produites dans la substance glutineuse vivante. Le résidu, laissé sur le porte-objet, peut aussi montrer un bien plus grand nombre de granules, si on le regarde avec un microscope médiocre, qui donne cet aspect à toutes les parcelles irrégulières. Au milieu de ce résidu se voient aussi un ou plusieurs globules plus ou moins volumineux, que Müller avait déjà observés et qu'il prenait pour des œufs ou des ovaires, et que M. Ehrenberg, en certains cas, a nommés testicules (Samendrüse).

Je dis que le phénomène de la différenciation offre une des preuves les plus frappantes de la simplicité d'organisation des Infusoires ; car il est certain que si des fibres musculaires, si un tégument résistant, si un intestin et des estomacs existaient à l'intérieur, on en verrait quelque indice pendant cette décomposition progressive. On ne pourrait, en effet, supposer que tous ces éléments de l'organisme se décomposent à la fois et qu'il n'y en a pas un seul qui subsiste un instant de plus que les autres, quand on voit dans les Planaires, dans les Distomes, dans les Méduses même qui occupent dans la série du règne animal un rang encore moins élevé que celui qu'on voudrait assigner aux Infusoires ; quand on voit, dis-je, ces animaux, en se décomposant, montrer distinctement les divers éléments de leur structure, et notamment des fibres bien visibles.

(1) Cet auteur, dans son mémoire de 1836 (Zuzatze zur Erkenntniss, etc.), dit à la page 5 : « On peut faire pondre artificiellement les Stentor, si on les observe avec peu d'eau sur une lame de verre. Ils s'élargissent d'abord et laissent sortir d'un creux de leur corps des grains verts par la déchirure de l'enveloppe. Si on ajoute alors un peu d'eau nouvelle, ils s'arrondissent de nouveau, la déchirure de la peau se ferme, et ils recommencent à nager, tandis que, dans d'autres cas, ils continuent à se décomposer (zerfließen) entièrement.
— (B—b) Un autre phénomène de décomposition des infusoirs, c'est l'exsudation de la substance glutineuse de l'intérieur à travers les mailles du tegument lâche qu'on aperçoit comme un réseau à la surface; il s'observe en général chez les Infusoirs, qui nese décomposent pas par diffusine, chez les Paramécies, les Leucophores, les Vorticelles, etc., et chez d'autres espèces dont le tegument, quoique non réticulé, est cependant bien réel, telles que les Enchelis pyrum, les Euglenes ou Raphanelles et les Di- selmis, etc. (r) On voit cependant quelquefois aussi des globules de cette substance glutineuse que j'ai proposé de nommer Sar- code, se montrer sur le contour des Infusoirs décomposables par diffusine, et chez ceux qui se décomposent déjà, dans les parties qui sont moins exposées au mouvement vibratile des cils. Dans ce dernier cas, ces globules, pouvant rester adhérens par un étranglement ou une sorte de pédicule à la partie déchi- rée de l'animalcule ressembleront quelquefois aux prétendus es- tomacs de M. Ehrenberg; je crois même que cet auteur a repré- senté des globules sarcodiques, ainsi pédicellés, dans plusieurs figures de son ouvrage. Souvent aussi, de tels globules, se dé- tachant tout-à-fait, flottent dans le liquide et suivent les courans occasionés par les cils. On pourrait alors, comme M. Ehren- berg, les regarder comme des estomacs tout-à-fait isolés et main- tenus fermés par la contraction spontanée de leur pédicule rom- pu, si l'on pouvait concilier cette supposition avec la largeur de ce même pédicule avant la séparation. On ne pourra, d'ail- leurs, conserver le moindre doute à ce sujet, si l'on examine attentivement, pendant un temps suffisant, les exsudations glo- buleuses ou discoïdes des Infusoirs, et surtout celles plus volu- mineuses de la Leucophra nodulata qui vit dans l'intérieur des lombrics et qui a fait l'objet d'un des chapitres de mes recher-
ches sur les organismes inférieurs (Ann. Sc. nat., décembre 1835). On ne manquera pas, en effet, de voir quelques-unes de ces exsudations glutineuses se creuser des cavités sphériques ou des vacuoles, qui iront en s’agrandissant jusqu’à l’entièrêâdtraction des masses glutineuses ou sarcodiques. Ce qu’on voit plus difficilement dans les Infusoirs, on peut l’observer avec la plus grande facilité, au contraire, sur les vers intestinaux et particulièrement sur la Douve du foie (Distoma hepaticum), qui laisse exsuder des globules sarcodiques de \( \frac{1}{6} \) millimètre environ dans lesquels la production des vacuoles se voit admirablement. (1)

Dans ces différens cas, cette substance se montre parfaitement homogène, élastique et contractile, diaphane, et réfractant la lumière un peu plus que l’eau, mais beaucoup moins que l’huile, de même que la substance gélatineuse ou albumineuse sécrétée par les vésicules séminalas de plusieurs mammifères et que celle qui accompagne les globules huileux dans le vitellus des œufs d’oiseaux, de poissons, de mollusques et d’articulés. On n’y distingue absolument aucune trace d’organisation, ni fibres, ni membranes, ni apparence de cellulosité, non plus que dans la substance charnue de plusieurs zoophytes ou vers et dans celle qui, chez les jeunes larves d’insectes, est destinée à former plus tard les ovaires et les autres organes intérieurs. C’est là ce qui m’avait déterminé à donner à cette substance le nom de sarcode, indiquant ainsi qu’elle forme le passage à la chair proprement dite ou qu’elle est destinée à le devenir elle-même. L’idée exprimée par cette dénomination univoque a d’ailleurs

(1) Je ne puis qu’engager les naturalistes à répéter cette observation sur les Entozoaïres, et particulièrement sur les Ténias et les Distomes, pour acquérir une notion claire de la nature du sarcode et de la propriété qu’il a de se creuser spontanément des vacuoles. Tous les entozoaïres trématodes et cestoïdes m’ont fait voir de nombreux globules de sarcode, lorsque je les conservais vivants, dans un peu d’eau entre des lames de verre; mais le Distome hépatique, si commun dans les canaux biliaires du foie des moutons, où sa présence est dénotée par un gonflement bien visible, est celui qui m’a donné cette substance en globules plus gros. Quand on a pris à l’observer, on le trouve aisément malgré sa transparence sur le contour des plus petits Ténias, des Scolex habitant l’intestin des poissons; des Distomes du poumon ou de la vessie des grenouilles, et de tous les autres Entozoaïres qu’on laisse mourir entre les plaques de verre, ainsi que sur le bord des plaies de diverses Annelides et des jeunes larves vermiformes d’insectes.
commencé à s'introduire dans la physiologie; on a dû reconnaître, en effet, que dans les embryons et dans les animaux inférieurs, le tissu cellulaire ne peut avoir encore les mêmes caractères que dans les vertébrés adultes, et qu'il a dû être primitive-ment une sorte de gelée vivante. Qu'on l'appelle de ce dernier nom ou qu'on l'appelle tissu hypoblasteux, comme le propose M. Laurent, ce sera toujours la même substance dont on aura voulu parler : une substance qui, dans les animaux supérieurs, est susceptible de recevoir avec l'âge un degré d'organisation plus complexe, mais qui, dans les animaux du bas de l'échelle, reste toujours une simple gelée vivante, contractile, extensible, et susceptible de se creuser spontanément de cavités sphériques ou de vacuoles occupées par le liquide environnant qui vient toujours soit directement, soit par imbibition occuper ces vacuoles. Telle paraît, d'ailleurs, être la cause qui, dans les animaux plus élevés, détermine la transformation de cette substance homogène en une substance plus organisée. Comme on l'a vu plus haut (page 245), il est toujours facile de distinguer les globules sarcodiques, qui agissent sur la lumière comme des lentilles convexes faibles, comparativement aux globules hui-leux, et les vacuoles qui agissent au contraire comme des lentilles concaves, puisque ce sont des cavités sphériques remplies d'eau, au milieu d'une substance plus dense ou plus réfringente.

Cette substance, Lamarck la nommait dans les Infusoirs tissu cellulaire, d'après l'usage qui voulait que ce fût là le tissu le plus élémentaire; cependant, il en parlait comme d'une masse glutineuse homogène, et, s'il y supposait des cellulosités, c'étaient des cellulosités absolument invisibles.

Müller, qui avait vu les exsudations de sarcode autour des Infusoirs ou dans leurs déchirures, les décrit comme des vésicules ou des bulles diaphanes; il a même vu des vacuoles dans quelques-unes de ces exsudations et les regarde comme des vésicules incluses (Voy. Kolpoda nucleus, anim. inf., p. 99); il les regarde en général comme des ovaires ou des ovules. En parlant du Kerona histrio, il les désigne simplement sous le nom de molécules muqueuses (moleculæ mucidae). Gleichen et beau-

IX. Zool. — Novembre.
coup d'autres observateurs les ont vues également, mais se sont mépris sur leur signification; il est présumable que le prétendu gaz intestinal observé par M. Ehrenberg sur son *Ophryoglena flavicans* (*Infusionsthierchen*, p. 360 et pl. xl, f. 9 d.) n'était autre chose qu'une exsudation de la substance glutineuse.

Lorsque je décrivis pour la première fois cette substance sous le nom de sarcode, en 1835, ses propriétés d'être insoluble, mais décomposable par l'eau; d'être coagulée par l'acide nitrique, par l'alcool et par la chaleur; de se dissoudre bien moins que l'albumine dans la potasse, qui paraît seul hâter sa décomposition par l'eau, sa faible réfringence et son caractère de viscosité et d'élasticité m'avaient paru suffire pour la distinguer des autres produits de l'organisme, tels que l'albumine, le mucus et la gélatine. La singulière faculté de se creuser de cavités sphériques ou vacuoles remplies d'eau m'avait paru tenir à un reste de vitalité qui l'aurait encore plus essentiellement distinguée des substances que j'ai citées. Mais nous connaissons si peu ce qu'on a confondu sous le nom commun d'albumine qu'il n'est peut-être pas impossible que diverses substances essentiellement différentes aient les caractères que j'ai assignés au sarcode, et qu'il faille encore trouver un caractère spécial pour distinguer la substance charnue des animaux inférieurs.

Malgré de légères variations dans leur manière de se comporter avec l'eau, il me semble qu'elle est bien analogue à celle des embryons de mollusques, quand la vie commence à s'y manifester; à celle de très jeunes articulés, et même à la substance que dans les poissons on trouve entre la peau et la chair, et que, chez plusieurs vertébrés, on fait sortir par expression de l'épaisseur des membranes muqueuses.

Levitellus des œufs d'articulés et de poissons est en partie formé d'une sorte d'albumine peu soluble dans l'eau et susceptible de se creuser des vacuoles comme la substance des Infusoirs, mais bien moins consistante et moins élastique; d'où résulte qu'au lieu de former des globules dans l'eau, elle forme des disques ou des gouttes aplaties sur la plaque de verre. La portion la plus consistante de la liqueur spermatique, celle qui est sécrétée par les vésicules séminales; chez le cochon d'Indepar
exemple, a la propriété de former dans l'eau des gouttes aplatis ou des disques lenticulaires et de se creuser aussi des vacuoles; mais ce phénomène dure très peu et la dissolution est bientôt complète. La partie extérieure et demi fluide du cristallin, celle qui, immédiatement au-dessous de la capsule, se confond avec l'humeur de Morgagni, m'a présenté aussi des particularités très analogues; ainsi elle forme des globules qui réfractent fort peu la lumière, paraissent assez élastiques et se creusent ordinairement des vacuoles; mais ici cette propriété est absolument étrangère aux phénomènes vitaux, car on l'observe encore au bout de plusieurs jours, lorsque les humeurs de l'œil ont déjà subi un commencement de putréfaction.

Le fait de la formation spontanée (1) des vacuoles pourrait être un phénomène physique et non organique, ces derniers exemples tendent à le faire croire; quoi qu'il en soit, cepen- dant, on devra reconnaître que ce fait doit avoir une grande influence sur le passage de la substance glutinense homogène à un degré d'organisation plus élevé.

La substance glutinense qui constitue la presque totalité ou la plus grande partie du corps des Infusoires étant dès-lors considérée comme simple et homogène, il devient sans doute fort difficile de s'expliquer son extensibilité et sa contractilité; mais, véritablement, on ne serait pas plus avancé en la considérant comme du tissu cellulaire à mailles invisibles, puisque le tissu cellulaire tel que nous le connaissons dans les vertébrés, est tout-à-fait privé de ces propriétés.

Au lieu de dire dans ce cas, comme dans beaucoup d'autres, que nous ne savons pas comment se produisent et le mouvement, et les phénomènes de la vie, il peut paraître plus simple de supposer, comme M. Ehrenberg l'a fait pour les expansions des Amibes et des Arcelles, qu'il y a dans cette substance si diaphane et en apparence si homogène, des membranes, des mus-

(1) Quand on a préparé une émulsion avec de l'huile et de l'eau gommée ou sucrée ou albumineuse et qu'on la soumet au microscope, on voit, dans les plus grosses gouttes d'huile, des gouttelettes d'eau emprisonnées ou simplement enchassées à la surface, et qui sont de véritables vacuoles occupées par un liquide moins dense que le milieu environnant; mais ce ne sont pas des vacuoles formées spontanément.
cles, des fibres et des nerfs imperceptibles; mais, à part les réflexions que l'on peut faire sur cet abuse étrange de l'argument analogique, ne doit-on pas reconnaître que c'est seulement reculer la difficulté que de supposer des organes invisibles là où l'on ne peut rien apercevoir.

En effet, soit que les fibres musculaires se composent d'autres fibres de plus en plus petites, soit que les fibres élémentaires se composent d'une série de globules réunis, comme par un ciment, par une substance susceptible de se contracter, il faudra bien en venir à concevoir un dernier terme, où une substance homogène est contractile par elle-même. Alors, pourquoi ne pas admettre que ce dernier terme est dans ce que nous montre de plus petit le microscope, dans des corps de \( \frac{1}{1000} \) à \( \frac{1}{5} \) millim., puisque nous voyons qu'à ce degré de petitesse ou un peu plus loin, les actions moléculaires contrebalancent les autres lois physiques : les liquides et les gaz ne peuvent s'écouler par des ouvertures trop petites; les corps solides, en particules de \( \frac{1}{1000} \) millimètre, cessent en quelque sorte d'être soumis aux lois de la pesanteur et de l'inertie, pour se mouvoir indéfiniment de la manière reconnue d'abord par M. R. Brown. (1)

CHAPITRE IV.

Organes locomoteurs et organes extérieurs ou appendiculaires des Infusaires.

Les principaux organes extérieurs des Infusaires sont les divers prolongements de leur substance charnue vivante, qui, sous la forme d'expansions, ou de filaments, ou de cils, ou de soies, servent à la fois à la locomotion et à la nutrition ou à la respiration, en multipliant les points de contact de la substance vivante avec le liquide environnant et avec l'air contenu. D'autres prolongements filiformes, comme ceux des Actinophrys ne peuvent

(1) Le mouvement Brownien des molécules étant singulièrement activé par la chaleur, tandis que les autres agents physiques sont sous influence sur lui, je proposai en 1835, de le considérer comme produit par les ondulations irrégulières de l'éther dans le liquide échauffé.
servir qu'à ce dernier usage, puisqu'ils sont presque immobiles. Les soies plus dures et cornées qui servent à l'armure de la bouche de certains genres, et les diverses sortes de cuirasse ou de test, peuvent aussi être considérées comme organes extérieurs.

Les expansions des Amibes et des Difflugies, tantôt plus courtes, tantôt plus effilées, et enfin tout-à-fait filiformes, simples comme dans le *Trinema* (*Diffugia enchelis* Ehr.,) ou ramifiées dans les Gromies et les Rhizopodes, offrent tous les passages jusqu'au long filament flagelliforme qui sert d'organe locomoteur aux Monades. Ces derniers Infusoirs eux-mêmes sont susceptibles, comme je l'ai déjà dit, de s'agglutiner aux corps solides pour une partie quelconque de leur surface, et s'étirent ensuite de manière à présenter un ou plusieurs filaments latéraux ou postérieurs également contractiles et mobiles. Ces filaments, qu'on reconnaît bien n'avoir rien de fibreux, de membraneux ou d'épidermique, se contractent et se meuvent par eux-mêmes, et ne sont point du tout mus par des muscles insérés à leur base, qui leur seraient décrire une surface conique ayant son sommet au point d'attache, comme M. Ehrenberg l'a supposé et même figuré (*Monas guttula*, pl. 1, fig. iii). Pour s'en convaincre, il faut observer les Monades vivant dans les vieilles infusions; ou en verras dont le filament, trois ou quatre fois aussi long que le corps, se meut simplement à l'extrémité comme un fouet vivement agité, et demeure raide ou légèrement courbé vers sa base. M. Ehrenberg, qui nomme ce filament une trompe, et qui, particulièrement chez les Monades, dit l'avoir observé en laissant évaporer sur le porte-objet du microscope la goutte d'eau contenant ces animalcules, ne paraît pas avoir connu sa vraie longueur: il l'avait pris d'abord pour une vraie trompe, et avait même représenté l'afflux des particules nutritives à l'extrémité chez ses *Trachelomonas* et *Cheetoglena* (11° mém. 1833, pl. vii. f. iii-iv). Maintenant, à la vérité, il prend cette trompe pour un prolongement de la lèvre supérieure; et même, en parlant de son genre *Phacelomonas*, qui est pourvu de huit à dix semblables filaments, il dit que les trompes et les cils ne sont point des organes trop différents
entre eux (Infus. p. 28). La bouche, suivant lui, est à la base des filaments: mais rien ne prouve que cette supposition soit fondée, car, chez un grand nombre d'Infusaires pourvus de cet organe, tels que les Euglena, on ne voit point d'intromission réelle de matière nutritive ou colorante; et chez les Monades, qui souvent présentent des petits amas de matières étrangères à l'intérieur, l'intremission n'a point eu lieu à la base de la trompe, non plus que par l'extrémité.

Si personne aujourd'hui ne veut persister à voir dans ces filaments des vraies trompes contenant un oesophage (1), je ne reviendrai pas sur les arguments que dans mes précédents mémoires je tirais de la ténuité de ces filaments, qui deviennent de plus en plus minces à l'extrémité, et de leur facile rupture, et enfin de leur multiplicité. Je dirai pourtant que cette dernière circonstance s'oppose même à ce qu'on suppose la bouche à leur base, puisque, chez l'Infusoire que j'ai nommé Hexamita (2), rien n'indique la présence d'une bouche à la base d'un des six filaments qui partent de différents points, de sorte qu'il y aurait autant de raison à y supposer six bouches invisibles qu'à en supposer une seule.

Les divers prolongements filiformes des Infusaires, quoique de même nature, se montrent plus ou moins consistants, plus ou moins contractiles: ainsi, tandis que ceux des Gromia, pouvant à chaque instant s'étendre, puis se fondre dans la masse, ne

(1) M. Ehrenberg décrit sous le nom de Trachelius trichophorus (Infusionsthierchen, p. 322, pl. 33, f. xii) un infusaire qui paraît bien être le même que j'ai nommé Pyronema en 1836; il représente comme une trompe assez épaisse et terminée par un bouton, ce que j'ai décrit comme un filament flagelliforme qui s'amincit considérablement à l'extrémité. A la vérité, il dit dans le texte que cette trompe est extraordinairement mince et difficile à voir, et que dans les individus observés en Russie, il n'a pas vu de bouton à l'extrémité de la trompe. D'ailleurs, en assimilant ce filament au prolongement antérieur garni de cils vibratiles des autres Trachelius, il ne le considère de même que comme un organe de tact et de mouvement, et il place la bouche à sa base.

(2) Il se pourrait que l'Hexamita fût la même espèce qui est représentée dans l'ouvrage de M. Ehrenberg (pl. xxii, f. vi) comme un petit corps oblong terminé par deux soies, et décrit sous le nom de Chlotomonas constricta; mais les figures sont trop imparfaites et trop incomplètes pour qu'on puisse prononcer avec certitude.
montrent que rarement un degré de tension qui leur permette d'abandonner le plan de reptation; ceux du *Trinema*, qu'on aurait tort de confondre avec les *Difflugies* (1), se dressent dans toute leur longueur, et s'inclinent d'un côté à l'autre, cherchant un point d'appui où ils se fixent et s'agglutinent pour faire avancer l'animalcule en se contractant; ceux du *Diselmis viridis* ont encore la faculté de s'agglutiner au verre; cependant ils ne sont pas susceptibles de se contracter entièrement, et même, après s'être rompus ou détachés, ils restent quelque temps visibles dans l'eau; comme des filaments flottants, sans mouvement; dans d'autres espèces, des filaments agglutinés par l'extrémité se contractent brusquement de manière à lancer l'animalcule à une certaine distance.

Le cils vibratiles paraissent être de la même nature que ces divers filaments: on les voit dans un grand nombre d'Infusoires se crisper et se décomposer après la mort comme une substance glutineuse, à moins qu'ils n'aient été fixés à la plaque de verre par l'évaporation du liquide: quelques-uns persistent pendant quelque temps, mais ils ne sont jamais d'une substance cornée comme ceux des Entomostracés et des articulés en général, puisque aucun ne persiste si on y ajoute un peu d'acide.

On ne peut donc, dans aucun cas, les assimiler à des poils cornés, sécrétés par un bulbe et mus par des muscles; l'analogie, prise des animaux supérieurs, a donc évidemment entraîné trop loin ceux qui admettent une telle similitude et supposent des muscles insérés à la base des cils. M. Ehrenberg dit cependant avoir vu, dans les grandes espèces des genres *Stylonichia* et *Kerona*, la base de chaque cil en forme de bulbe, et ce cil décrivant une surface conique dont le sommet est au bulbe même: il croit pouvoir expliquer ce mouvement par l'action de deux muscles qui agissent sur leur base, et de plus il regarde la distribution constante des cils en rangées comme due à l'existence de muscles longitudinaux qui les mettent en mouvement par

(1) La *Difflugia enchelys* de M. Ehrenberg est évidemment le même infusoire que j'ai nommé *Trinema* en 1836; mais on reconnaitra à l'inspection des figures qu'il en donne (*Inf. pl. ix, fig. ix*) que l'auteur allemand n'a pas bien vu ni compris les filaments de cet animalcule.
série ; mais il a soin d’ajouter que ce fait n’est pas facile à observer directement : je le crois bien ; je dirai même que la difficulté de les apercevoir est si grande, que jamais je n’ai rien pu voir de semblable. C’est de ce résultat négatif que j’ai tiré la conséquence toute contraire, qu’il n’y a point de muscles moteurs pour les cils ; je crois même que les cils vibratiles, au lieu d’être portés sur les granules de la surface réticulée de certains Infusoires, sont-situés dans les intervalles ; quant aux appendices plus volumineux des Kerones (Stylonychia, Kerona, Oxytricha), ceux qu’on a nommés crochets et styles, ils montrent en effet un épaississement à leur base ; mais rien ne prouve qu’il y ait un vrai bulbe ; bien au contraire, la décomposition totale par diffusion de ces Infusoires montre que c’est partout une même substance.

Müller avait déjà distingué, parmi les appendices ciliformes des Infusoires, ceux qui sont plus fins et vibratiles (Ciliata micantia) et ceux qui, plus gros ou plus raides, sont immobiles (Setae), ou simplement capables de se plier et de s’infléchir en divers sens pour servir à la progression ou au toucher ; il nommait ces derniers cirri ou cornicula. M. Ehrenberg, en outre des cils et des soies, distingue aussi des styles et des crochets (uncini).

Il peut paraître surprenant que des organes aussi divers soient regardés comme des expansions plus ou moins consistentes de la même substance qui constitue en majeure partie le corps des Infusoires ; peut-être devrait-on admettre quelque autre différence dans leur nature, puisque véritablement une substance organisée peut être modifiée de plusieurs manières ; mais cette différence, si grande qu’on la veuille supposer, ne pourra jamais aller jusqu’à en faire des vrais poils, sécrétés par des bulbes comme ceux des Vertébrés, ou même des poils cornés tubuleux, comme ceux des animaux articulés. Müller, quoiqu’il parle à plusieurs reprises de la base globuleuse de ces appendices, comme s’il leur supposait des bulbes sécréteurs, rend aussi témoignage de leur nature molle et glutineuse, et de leur décomposition dans l’eau, notamment à l’occasion de la diffusion du Trichoda charon et de l’Himan-
topus sannio (1). On peut d’ailleurs se convaincre facilement de ce fait en approchant d’un flacon d’ammoniaque le porte-objet chargé d’Infusoires, tels que les Kerones, les Euplæa, etc. Ces animalcules cessent bientôt de se mouvoir, et subissent des déformations curieuses, leurs cils se crispent et se contractent, et finissent par disparaître, comme on le voit dans les figures que j’ai données, représentant les changements successifs de la Kerona pustulata et de la Plæsconia charon.

Ce dernier exemple montre aussi que la cuirasse des Euplæa ou Plæsconia n’est pas plus de nature cornée que les cils, car elle se déforme et se décompose en même temps, bien différente en cela de la cuirasse des Brachions, qui se conserve dans l’eau et résiste même à la putréfaction. Le test des Arcelles, des Difflugies, des Trachelomonas et de plusieurs autres Cryptomonadines, se conserve aussi sans altération, ainsi que l’étui des Dynobryum et des Tintinnus, Cothurnia et Vaginicola : il en peut assurément résulter de fort bons caractères pour la distinction des groupes, mais on ne peut donner à ces parties la dénomination commune de cuirasse.

Les petites baguettes solides qui entourent comme une natte la bouche des Chilodon, Prorodon et Nassula, résistent beaucoup plus à la décomposition que les autres appendices. Je les ai même vus persister après l’action d’une dissolution de potasse, qui avait dissout tout le corps d’un gros Chilodon (Kolpoda cucullulus, Müller ?) (2), mais celles des Nassula se dissolvent au contraire très bien dans la potasse. On peut sans doute admettre que ce sont des productions cornées analogues aux soies des Nais et plus encore aux crochets des Ténias, des Cysticerques, et des Echinocoques. Nous ne savons comment se forment cel-

(1) Muller s’exprime ainsi (Animalcula Infusoria, p. 229) : Cilia in mortus evanescunt, et p. 250 : aqua deficiente... cilia rigida obsque motu paucis momentis persistentia evanuere de- nique prorsus.

(2) Cet Infusoire, observé dans l’eau de l’Orne en 1835, était beaucoup plus gros que les Chilodon cucullulus que j’ai revus ailleurs, car il était long de 1,5 millimètre ; il avait en outre un point oculiforme rougeâtre, qui persista avec le cercle aréolaire qui l’entourait, ainsi que l’armure de la bouche après l’action de la potasse ; si ce point n’était pas un corps étranger avalé par l’Infusoire, cet animalcule constituerait un genre particulier.
F. Dujardin. — Sur les Infusoires.

les-ci, mais nous savons que leur présence n'est pas l'indice d'une organisation très complexe; et celle des Infusoires étant encore plus simple, nous n'avons pas de motifs pour les regarder comme indiquant tout un système d'organes qu'on ne saurait apercevoir.

Les pédicules contractiles des Vorticelles peuvent aussi être comptés parmi les organes extérieurs des Infusoires. Leur structure et le mécanisme de leurs mouvements présentent un des problèmes les plus difficiles de cette étude. On voit, à la vérité, dans leur cavité centrale, une substance charnue moins transparente, mais ce n'est point, comme on a paru le croire, une vraie fibre musculaire : au contraire, la partie diaphane enveloppant ce cordon charnu et formant une bande plus mince vers un de ses bords, se contracte seule; et comme elle le fait davantage au bord le plus épais, il en résulte une courbe en hélice dont le bord externe est occupé par le tranchant du pédicule.

Leur substance paraît plus résistante que celle des cils, car on en voit quelquefois qui restent assez long-temps isolés dans le liquide. Les pédicules simples ou rameux des Epistyliis sont encore plus résistants : ils restent fixés aux plantes aquatiques bien long-temps après que les animaux ont disparu, et présentent alors le plus grand rapport avec les polypiers cornés des Sertulariées, ainsi que les étuis des Dynobrium.

Pour compléter l'examen des organes locomoteurs des Infusoires, il faut encore parler de l'enveloppe réticulée si évidente des Paramécies, des Vorticelles, etc., laquelle se contracte dans un sens ou dans l'autre avec plus ou moins de rapidité. Cette enveloppe est susceptible de laisser exsuder la substance intérieure, et paraît constituer un réseau contractile dont les nœuds en séries transverses ou obliques, donnent à la surface l'apparence d'une granulation régulière; mais la substance contractile elle-même est homogène et non granulée ou formée de granules. Il y a donc véritablement ici une certaine analogie avec la fibre élémentaire qui, dans les insectes, se montre essentiellement homogène et simplement noduleuse par l'effet de la contraction. On pourrait dès-lors vouloir poursuivre l'analogie jusque chez
les expansions si diaphanes des Arcelles et des Amibes, mais encore faudrait-il alors reconnaître que la contractilité est dans la masse tout entière et non dans des fibres incluses ou dans un tégument.

CHAPITRE V.

Bouche et anus des Infusoires.

Sans remonter jusqu’aux plus anciens micrographes, qui ont cherché à deviner, plus qu’ils n’ont observé réellement, l’organisation des Infusoires, nous trouvons l’existence d’une bouche chez les Infusoires, mentionnée positivement par Gleichen chez les Kolpodes, et indiquées sept ou huit fois directement ou indirectement par Muller, quand il parle de l’intestin. Ainsi, à la page 240 de son ouvrage, il dit que le Kerona mitylus avale continuellement beaucoup d’eau; à la page 197, il dit que le Trichoda linter présente une incision par laquelle il paraît avaler l’eau. Son Trichoda lynceus aurait aussi, suivant lui, un canal intérieur, allant de la bouche aux viscères du milieu du corps; cependant il déclare bien positivement ailleurs n’avoir jamais vu un Infusoire avaler sa nourriture.

Lamarck donna précisément à ses vrais Infusoires le caractère d’être astomes ou sans bouche; mais il accorda cet organe à ceux qu’il place parmi les Polypes ciliés. M. Bory refusa également une ouverture buccale à ses deux ordres d’Infusoires, les Gymnodés et les Trichodes, et n’en reconnut l’existence que chez ses Stomoblephares, comprenant les Vorticelles sans pédicule.

Ehrenberg, en annonçant ses idées sur l’organisation des Infusoires en 1830, leur accorda à tous une bouche entourée de cils; il attacha tant d’importance à la position de cet organe, qu’il caractérisa par là ses divers genres de Monadines, les uns devant avoir une bouche tronquée terminale dirigée en avant, les autres cette même bouche tronquée, dirigée en divers sens dans le mouvement, quelques autres enfin une bouche oblique sans bords et bilobée. Les Cryptomonadines étaient aussi dis-
tingués par une bouche ciliée ou nue; celle des Euglènes était positivement ciliée: les Vibrions eux-mêmes devaient avoir une bouche terminale. Les Enchelides et les Leucophres étaient pourvus d’une bouche terminale droite ou oblique, presque aussi large que leur corps. De tels résultats, quoiqu’ils eussent été modifiés, en 1832 et 1833, par la découverte d’une trompe chez quelques Cryptomonadines et chez l’Englena viridis était trop inadmissibles pour que je ne fasse pas tenté de les contredire. Ma contradiction, en 1835, a été trop loin, et, convaincu, comme je le suis encore, de l’inexactitude des faits que je viens de citer, j’ai conclu que les autres vrais Infusoires ne pouvaient non plus avoir de bouche. Je ne tardai pas à revenir sur cette assertion hasardée, et, au commencement de 1836 (Annales des Sciences naturelles, avril 1836), je dis avoir vu non-seulement l’introduction des substances colorées par une ouverture particulière dans les Kolpodes, mais encore la déglutition de plusieurs brins d’oscillaires par une Nassula, ayant la bouche entourée d’un faisceau de soies cornées raides.

Dans son mémoire de 1836, M. Ehrenberg confirma son observation du filament flagelliforme de certains Infusoires, qu’il a continué depuis à nommer une trompe, quoiqu’il en ait trouvé plusieurs à-la-fois dans divers genres et qu’il les regarde comme analogues aux cils. La bouche, suivant lui, n’est donc point située à l’extrémité, mais à la base de ces trompes. Il n’a pu toutefois établir autrement que sur des conjectures l’existence de cette bouche dans les Infusoires à filaments. Quant aux Infusoires qu’il avait représentés primitivement avec une si large bouche, il a quelque peu varié à leur égard; et sans renoncer positivement à ses anciennes figures de la Leucophasia patula, où il avait représenté leur intestin, il en donne de nouvelles, qui ne montrent ni l’intestin, ni grande bouche.

On ne peut toutefois douter de la présence d’une bouche que chez les Monadines, les Vibrions, les Amibes, les Euglènes et les autres espèces d’Infusoires non pourvus de ciles vibratiles, sans parler des Navicules et des Clostéries. Chez les Infusoires ciliés, il existe réellement une ouverture servant à l’introduction des alimens, et, chez quelques-uns même, cette ouverture est
munie d'appendices particuliers, d'un faisceau de petites baguettes cornées qui l'entourent en manière de nasses chez les Chilodon, Nassula, Prorodon et Chlamidodon, ou d'une lame vibratile, sorte de valve charnue chez les Glaucoma. Il est bien certain aussi que cette ouverture est susceptible de dilatation à la volonté de l'animalcule, et que les baguettes cornées qui l'entourent peuvent s'avancer plus ou moins, s'écarter et se rapprocher pour faciliter la déglutition d'une proie plus ou moins volumineuse. Il n'en faut pas davantage sans doute pour qu'on puisse regarder cette ouverture comme une bouche. Si cependant on devait conclure de l'existence d'une bouche à celle d'une cavité digestive permanente, il faudrait ne lui donner ce nom qu'avec une certaine réserve. En effet il y a une ouverture pour l'introduction des aliments, et la cavité destinée à loger ces aliments n'existe point d'abord, elle est formée successivement par ces aliments eux-mêmes et par l'eau que le mouvement des cils y pousse incessamment. La substance charnue intérieure arrive jusque contre la bouche et se trouver progressivement creusée d'un tube en cul-de-sac, dont l'extrémité est interceptée de temps en temps par le rapprochement des parois.

L'existence d'une ouverture anale chez les Infusoires est bien moins certaine, et si quelquefois on remarque une véritable excrétion dans une partie quelconque du corps, on ne peut dire absolument qu'elle s'est faite par un anus. Il ne suffit pas d'ailleurs de voir un amas de substances analogues aux aliments d'un Infusoire, retenues à sa partie postérieure, pour conclure que ce sont là des excréments; car les courans produits par les cils sur les deux côtés du corps doivent nécessairement porter en arrière des particules plus ou moins liées entre elles par des mucosités, et qui restent légèrement adhérentes à l'animalcule là où les courans ne se font plus sentir (1). On conçoit que, si les deux courans produits par les cils, au lieu de se rencontrer tout-à-fait en arrière, viennent se joindre sur un des côtés, en

(1) Gleichan ayant vu des Kolpodes trainer après eux un amas de particules étrangères a cru y voir le frai de ces animalcules.
avant ou en arrière, ce sera encore au point de jonction que sera placé l'amas de particules en question, et, pour peu que l'on s'abandonne à l'esprit de système, on verra l'anus, ainsi placé dans telle ou telle position, en rapport avec la disposition des cils. C'est ce simple fait qui a pu faire croire aussi aux anciens micrographes que les Infusoirs sont pourvus d'un orifice excréteur; cependant il arrive quelquefois que l'on voit réellement sortir du corps des Infusoirs, sur quelque point de leur contour, des substances contenues dans l'intérieur; et probablement le résidu de leur digestion.

Müller dit positivement avoir vu sortir les excrémens du Kerona mytilus (sordes excernere vidi, Anim. inf. p. 240). On ne peut douter que M. Ehrenberg n'ait vu aussi; car il l'a représenté pour beaucoup de ses Infusoirs; moi-même je l'ai vu plusieurs fois et notamment de la manière la plus distincte dans l'Amphileptus anser Ehr. (Vibrio anser Müller). Mais ce que j'ai vu ne m'a point convaincu de l'analogie de cette ouverture accidentelle avec une ouverture anale qui devrait être la terminaison d'un intestin.

J'avais recueilli, le 6 décembre, dans des ornières au nord de Paris, un enduit brun au fond de l'eau, sur une terre blanche. Croyant avoir pris ainsi des navicules, je ne fus pas médiocrement surpris de voir l'eau de mes flacons fourmiller de ces Amphileptus, que j'avais auparavant rencontrés toujours isolés. Avec eux se trouvaient quelques Hydatines et des Monadines vertes qui leur servaient de nourriture. Il me fut donc bien facile d'étudier mon Amphileptus; car chaque goutte, mise sur le porte-objet, en contenait plusieurs. À l'intérieur se voyaient toujours cinq ou six vacuoles distendues par de l'eau, et par des Monades ou d'autres substances avalées. Ces vacuoles changeaient de place, en s'avançant peu-à-peu vers l'extrémité postérieure, où se trouvait une vacuole ou vésicule plus grande, souvent ir régulière, lobée et evidentement formée par la réunion de plusieurs vacuoles plus petites, amenées successivement en contact, pour se fondre en une seule, comme des bulles de gaz. Cette grande vésicule postérieure s'emplit ainsi de plus en plus; ses parois s'amincissent et elle finit par s'ouvrir latérale-
ment pour verser son contenu au-dehors; puis elle se referme avec des dimensions beaucoup moindres. Ce mode d'excrétion est parfaitement en rapport avec la nature molle et glutineuse de cet Infusoire, que la pression entre deux lames de verre, et mieux encore que la vapeur d'ammoniaque décomposent en gouttelettes diaphanes de cette substance glutineuse dont j'ai parlé plus haut.

Cet orifice excréteur temporaire est bien à la place indiquée par M. Ehrenberg, pour son gendre Amphileptus. Sera-t-il toujours au même endroit? Je ne sais, mais il me paraît probable que, dans la paroi formée par le rapprochemenl et la soudure de substance glutineuse homogène, une nouvelle ouverture ne pourra pas se produire exactement au lieu même qu'occupait la précédente. Si ce mode d'excrétion est général, comme je le présume (1), l'orifice excréteur devra être placé à l'endroit où les vésicules intérieures, les prétendus estomacs s'arrêtent après avoir parcouru un certain espace dans la substance glutineuse de l'intérieur, et sa position, bien qu'il ne soit pas à l'extrémité d'un intestin, pourra fournir de bons caractères de classification.

Dans les Vorticelles, il paraît se produire à côté de l'ouverture buccale, c'est-à-dire que les vésicules remplies d'eau et d'aliments parcourent à l'intérieur un circuit qui les ramène contre l'entrée du cul-de-sac au fond duquel se creusent et se séparent ces vésicules ou prétendus estomacs.

La décomposition par diffusion des Infusoires peut présenter aussi l'apparence d'un large orifice excréteur sur le contour d'un de ces animacules et particulièrement dans la partie postérieure; en effet, si, par suite de l'évaporation de l'eau, il ne se trouve plus dans les conditions normales, il commence à se décomposer, en rejetant à une certaine distance, par l'effet du mouvement des cils, les corps étrangers dont il s'est nourri et

(1) L'excrétion des substances avalées par les Infusoires se voit d'une manière analogue chez les Kerona pustulata, Oxytricha pellionella et chez d'autres espèces sans tégument, qui tennes captives entre des lames de verre, s'ouvrent latéralement pour laisser sortir lentement une masse plus ou moins volumineuse et se referment ensuite.
sa propre substance. Si alors on lui rend du liquide convenable, il reprend la vie, sa blessure se ferme et la partie désagrégée reste comme une excréption.

C'est dans des circonstances à-peu-près semblables qu'on voit se former sur leur contour des exsudations globuleuses et diaphanes de la substance glutineuse interne, et c'est présumablement une telle exsudation, que M. Ehrenberg considère avec doute, il est vrai, comme un gaz intestinal de l'\textit{Ophryoglena flavicans} (\textit{Infusionsthiérenchen}, p. 360, pl. xl, fig. 9).

\textbf{CHAPITRE VI.}

\textit{Organes digestifs des Infusoirs.}

\textbf{A. Globules intérieurs ou vésicules stomacales.} — Dans l'intérieur de certains Infusoirs se voient des globules ou des vésicules variables, quant à leur nombre, quant à leur forme et à leur position, qui ont été vus par tous les micrographes, mais interprétés diversement par chacun d'eux. Ces vésicules, remarquables par leur extensibilité indéfinie et par leurs contractions subites, renferment quelquefois des corps étrangers, et même d'autres Infusoirs plus petits, morts ou vivans, qu'on doit supposer avoir été avalés. Plus souvent elles ne contiennent que de l'eau ou du moins un liquide aqueux moins réfringent que la substance charnue environnante, comme on s'en assure, en faisant varier la distance du microscope à l'objet. En effet, ces vésicules deviennent plus sombres à mesure qu'on les éloigne, et paraissent au contraire comme des globules plus brillants au centre, si on les rapproche. Le contraire a lieu pour le corps diaphane de l'Infusoire, de telle sorte que, dans certains cas, on croit voir dans l'animalcule un véritable trou, librement traversé par la lumière. En général, les micrographes, faute d'avoir établi des comparaisons convenables avec des globules de diverses substances plus ou moins réfringentes, ont pris les vésicules intérieures des Infusoirs pour toute autre chose que pour ce qu'elles sont réellement, et ont attribué une même si-
gnification à toutes les apparaences globuleuses, observées dans ces animalcules.

Müller avait bien vu ces objets, et quoique, dans la même acception, il comprenne des choses véritablement différentes, ses expressions sont bien précises et bien propres à en donner une idée. Dans plus de quarante endroits de son histoire des Infusoires, il en parle sous le nom de vésicules hyalines, de globules, de bulles et de nodules, qui lui paraissent caractériser, parmi les Infusoires, un groupe, qu'il veut nommer Bullaria, par opposition avec d'autres Infusoires (1) d'une organisation plus simple, dans lesquels on ne voit pas de ces bulles ou vésicules. Il regarde avec doute les plus grands globules comme des ovaires, et donne le nom d'ovules à ceux des plus petits qui se trouvent disposés en rangées dans le Stentor polymorphus, dans les Kerona mitylus et lepus, etc. Il distingue chez quelques individus de Kolpoda meleagris trois globules plus grands au milieu (Sphœrulœ), qu'il suppose pouvoir remplir les fonctions d'estomac ou d'intestin, parce que, dans l'état de vacuité, elles sont moins visibles, tandis que les Globules pellucides, formant une rangée près du bord, persistent après la diffusée de l'animalcule, ce qui, suivant lui, ne permet pas de douter que ce soient des œufs (Anim. inf. p. 100). Dans le Kolpoda cucul tus, il a compté huit à vingt-quatre vésicules pellucides, qu'il regarde encore comme des œufs (saboles) et qu'il a vus expulsés au-dehors à la mort de l'animal.

Ailleurs Müller mentionne l'apparition et la disparition alternative de ces vésicules pendant la vie de l'animal (2) ou leur disparition après la mort (3), et enfin, en parlant du Trichoda aurantia (l. c., p. 185), il signale « une vésicule qui, se montrant quelquefois à la partie postérieure, offre l'apparence trom-
pense d'un trou, mais dont la vraie nature, ajoute-t-il, est indiquée par la comparaison de vésicules semblables dans d'autres parties du corps. » Il parle d'ailleurs toujours de ces vésicules comme étant en nombre variable.

Quoique l'Italien Corti et, plus anciennement encore, Joblot eussent dit avoir vu des Infusoirs avaler leur nourriture, ce fait paraissait si peu certain qu'il ne put influer sur l'opinion de Müller, relativement à la signification des vésicules ou globules intérieurs. Une expérience concluante restait à faire : il s'agissait de vérifier si des Infusoirs auraient avalé les parcelles de matière colorante en suspension dans le liquide. Cette expérience, Gleichen la fit avec succès, en 1777, sur des Paramécies, des Kolpodes et des Vorticelles; et, chose surprenante, après avoir vu des globules colorés par le carmin à l'intérieur des Infusoirs, il en tira une conclusion absurde. Il avait voulu, disait-il, constater une déglutition effective de la nourriture, et, après avoir reconnu que le carmin avait passé dans l'intérieur, il regarda les globules colorés comme des œufs, attendu que, quand ils sont séparés par des interstices, on les voit entourés d'un anneau clair, comme les œufs de grenouille (1). Cependant, il n'était pas satisfait lui-même de cette supposition; et, après avoir dit qu'il a vainement tâché de voir éclore ces prétendus œufs, sortis spontanément du corps des Infusoirs, il ajoute un peu plus loin, en appréciant les doutes qu'on peut élever à ce sujet, que si les globules excrétés ne sont pas les excréments de ces animalcules, ce qui, dit-il, souffre bien des difficultés, il ne sait plus qu'en dire. Il avait bien remarqué, d'ailleurs; que tous les animalcules qui ne contiennent pas de globules, ne prennent jamais de couleur, et c'est ce qui rend son erreur encore moins concevable. D'un autre côté, il disait aussi (2), que « les bulles vues à l'intérieur ne sont souvent que l'effet du gonflement de la fine peau musculuse de l'animalcule, et qu'elles disparaissent instantanément ».

(1) Dissertation sur la génération, les animalcules, etc., par Gleichen; trad. franç., p. 177-198.

(2) Même ouvrage, pages 126-127.
L'expérience de Gleichen demeura comme oubliée jusqu'à l'instant où M. Ehrenberg a su en tirer un si grand parti; et, dans l'intervalle, on continuait à regarder les globules intérieurs comme des corps reproducteurs, ou même, avec Schweigger, comme des Infusoires plus petits, comme des monades logées dans les plus gros animalcules.

M. Bory, dans sa dernière publication sur ce sujet (Dict. cl. d'Hist. nat., t. 17, p. 52), jugeant, d'après ce qu'on sait de certains Gymnodés, qui, comme je le pense aussi, ne peuvent avoir d'estomacs, a nié la signification réelle de ces vésicules dans les autres Infusoires : il a même cru pouvoir, d'après ses expériences, assurer que ce ne sont pas les globules internes ou prétendus estomacs qui se pénètrent de la teinture ; mais il eut entièrement raison de contester leur communication directe avec l'extérieur et surtout leur liaison avec un intestin central ; car, dit-il, « ces globules sont tellement mobiles qu'ils se déplacent en tout sens, passent de devant en arrière selon les moindres mouvements que se donne l'être dans lequel on les distingue. S'ils étaient mis en rapport avec la surface par quelques tubes, tous ces intestins se mèleraient d'une manière inextricable ». M. Bory, d'ailleurs, quoiqu'il refusât même une bouche véritable à ses Gymnodés, disait avoir vu plusieurs grosses espèces en avaler d'autres.

— B. — Intestin des Infusoires. Les expériences de coloration artificielle avaient conduit M. Ehrenberg à reconnaître en 1830 la réalité d'une déglutition chez beaucoup d’Infusoires ; considérant alors comme des estomacs toutes les vésicules où s’était logée la matière colorante, cet observateur chercha à deviner le mode de connexion de ces estomacs avec une bouche et un anus. Trompé sans doute par quelque illusion, il crut voir un tube central droit ou diversément courbé, auquel les vésicules stomacales sont suspendues par des tubes plus étroits, comme les grains d'une grappe de raisin. Il décrivit et représenta l’Enchylys pupa avec un intestin droit, la Leucopha pra patula avec l’intestin courbé trois fois et la Vorticella citrina avec cet intestin formant un cercle presque complet et revenant s’ouvrir pour l’excrétion à côté de l’orifice buccal. Dans des Monades, au con-
traire, il représentait tous les estomacs longuement pédicellés autour de la bouche et non suspendus à un intestin. Quoique, dans le texte de son mémoire, il eût soin de dire que les vésicules remplies d'une nourriture solide sont sphériques et paraissent isolées parce que l'intestin qui les réunit se rétrécit et devient transparent, cependant ses dessins, censés faits d'après nature, représentaient cet intestin partout également gonflé et même rempli de matière colorante, chez la Vorticelle, de sorte qu'on était naturellement conduit à penser que ces représentations étaient idéales. Il reconnaissait bien qu'une vésicule pouvait se dilater considérablement, de manière à loger une proie très volumineuse, et, conséquemment, il admettait que l'intestin avait dû se dilater également pour livrer passage à cette proie. Il n'avait point encore aperçu de différence entre les vésicules ou les globules de l'intérieur, mais il attachait alors tant d'importance à la découverte qu'il croyait avoir faite de l'intestin des Infusoires qu'il en fit la base de sa classification : nommant polygastriques les Infusoires proprement dits, par opposition avec les rotateurs, qui sont monogastriques, et qui, réunis par lui sous la même dénomination, lui fournissent de fausses analogies. Il distinguait les anentérés (anentera), qui, dépourvus d'intestin, comme les Monades, ont leurs estomacs pédicellés suspendus simplement autour de la bouche, et les entérodélés, qui ont un intestin. Ceux-ci étaient divisés en cyclocœla, orthocœla, et campylocœla, suivant que l'intestin formait un cercle, comme dans les Vorticelles, qu'il était droit comme dans les Enchelys, ou contourné comme dans les Leucophores; mais l'auteur, pour se conformer, disait-il, aux règles admises en zoologie, substituait immédiatement à ces dernières divisions, d'autres coupes établies sur des caractères extérieurs dépendant de la position de l'intestin, c'est-à-dire sur la position de l'anus et de la bouche. Il nommait donc anopisthia les cyclocœla qui ont les deux ouvertures réunies en avant; enantiotreta ceux qui ont ces deux ouvertures opposées, et situées aux extrémités du corps, et qui peuvent se subdiviser en Orthocœles et en Campylocœles; allotreta, ceux qui ont une des ouvertures terminale et l'autre latérale; et enfin Katotreta ceux chez
lesquels les deux ouvertures sont latérales ou non terminales. Dans son deuxième mémoire (1832), M. Ehrenberg, sans apporter de nouveaux faits à l’appui de son opinion, développa davantage ses premières idées. Dans son troisième mémoire (1833), il représenta dans deux nouveaux types, le *Chilodon cucullulus* et le *Stylonychia mitylus*, l’intestin aussi large, sinon plus large que dans les trois précédentes espèces, ce qui semble être en contradiction avec la contractilité extrême qui aurait dérobé cet organe aux investigations persévérantes des autres observateurs. En même temps, il commença à établir une distinction entre les vésicules que peut remplir la matière colorante, et celles qui, toujours remplies d’un liquide diaphane, et ordinairement plus volumineuses et plus susceptibles de contractions subites, sont prises par lui pour des organes génitaux mâles. Déjà, en 1776, Spallanzani avait signalé chez les Paramécies ces dernières vésicules, qui dans cette espèce sont en forme d’étoile, mais il leur avait assigné des fonctions respiratoires. M. Ehrenberg, au contraire, en poursuivant ses idées sur la signification qu’il leur attribue, s’est donné un moyen de lever en apparence les difficultés que présente l’explication du jeu de toutes ces vésicules intérieures.

Dans son grand ouvrage publié tout récemment, en 1838, il a reproduit sans changement les figures des cinq espèces précédemment représentées avec un intestin largement dilaté, et de plus il a ajouté, comme représentant aussi ce même organe, la figure du *Trachelius ovum*, déjà décrit en 1833 (IIIe mémoire) avec une large bande foncée au milieu, et d’où partent des rameaux très minces, anastomosés, ce qui n’a vraiment aucun rapport avec l’intestin primitivement supposé, si contractile et si difficile à percevoir. Il a bien représenté aussi un intestin plus ou moins complet chez plusieurs Vorticellines ; cet intestin, uniformément dilaté dans quelques-unes, se montre dans la figure de l’une d’elles (*Epistylis plicatilis*) renflé d’espace en espace, comme si les estomacs, au lieu d’être appendus en grappe, étaient enfilés à la suite les uns des autres. Quant à la figure qu’il donne de la *Paramécie aurelie* avec un intestin replié, il avertit lui-même que c’est une figure idéale. Tou.
en déclarant que ce n'est que dans sept espèces, dont quatre Vorticelles, qu'il a pu voir l'intestin assez clairement (1) pour le dessiner, il compte parmi les quatre espèces où il n'a pu l'apercevoir que par le passage successif des aliments, précisément les deux Infusoires donnés en 1830 comme lui ayant montré les premiers cet intestin; et encore a-t-il mis à côté de ses anciennes figures de la Leucophre (2), des figures nouvelles qui semblent les contredire. On doit remarquer aussi l'insistance avec laquelle cet auteur recommande les Vorticellines pour la vérification de ce fait si important, et la tendance qu'il a toujours montrée à négliger, pour y représenter l'intestin, les espèces qu'il avait citées dans son premier mémoire comme y ayant remarqué d'abord cet organe: ainsi l'exemple de la Leucophre perd une grande partie de sa valeur par la comparaison des nouvelles figures, les Paramécies n'ont fourni qu'une figure idéale, et les Kolpodes n'ont jamais été représentés par lui avec un intestin quelconque.

Voudra-t-on, comme on l'a déjà fait, invoquer l'analogie des Rotateurs ou Systolides, etc., pour prouver l'existence de l'intestin chez des Infusoires, là où on n'en a pas même pu signaler un indice? Mais, comme je l'ai dit plus haut, la différence des deux types est si grande, que cette analogie est des plus imparfaites, et, tout en persistant à nier l'intestin des Infusoires proprement dits, j'admis chez les Systolydes, non-seulement un intestin, mais encore des vraies mâchoires, des organes respiratoires, des glandes et un ovaire.

Dira-t-on qu'il suffît d'avoir démontré que les substances alimentaires ont pénétré du dehors dans ces vésicules, pour conclure d'abord que ce sont des estomacs, et ensuite que ces estomacs doivent communiquer avec un intestin, car on ne concevrait pas des estomacs sans communication avec l'extérieur? Mais voilà précisément ce qu'on pourra contester; car cette conséquence s'appuie sur une fausse analogie avec des animaux supérieurs chez lesquels l'estomac est toujours la conti-

(2) Die Infusionsthierchen, von Ehrenberg, 1838, pl. xxxii, fig. 1 2, 3, 4, 6.
nuation de l'intestin. Mais avant d'en venir aux preuves directes, nous devons examiner une objection qui, présentée d'abord par M. Bory de Saint-Vincent en 1832, a été reproduite de nouveau par le docteur Focke de Bremen, en 1835 (1), et vient encore d'être présentée à M. Ehrenberg par le professeur Rymer-Jones, devant l'Association britannique à New-Castle. Cette objection, que je crois parfaitement fondée, repose sur le mouvement intérieur des globules ou vésicules stomacales, qu'on ne peut aucunement concilier avec l'hypothèse d'un intestin reliant ensemble tous ces globules, et qui prouve au contraire leur indépendance absolue. Comme le disait M. Bory, les intestins, les tubes de communication, s'ils existaient, seraient bientôt mêlés d'une manière inextricable, et, à moins de les supposer indéfiniment extensibles, ils ne permettraient pas aux globules de se promener comme ils le font à l'intérieur.

Aux objections fondées sur le déplacement des prétendus estoniaes à l'intérieur des Infusoirs, M. Ehrenberg répond, dans son grand ouvrage, que ce mouvement n'est qu'un déplacement apparent, analogue à celui qu'éprouvent les petites figures en bois peint que font manœuvreles enfans sur le bras extensible formé de tiges assemblées en losanges, qui leur sert de jouet. Ce déplacement intérieur, que j'avais cru, en 1835, pouvoir expliquer par le changement de position des Infusoirs, par leur rotation autour de l'axe de leur corps, je le regarde depuis deux ans comme bien réel, et il a été surtout bien vu et bien décrit par le professeur Rymer-Jones (2). Ce savant observateur, en déclarant publiquement à New-Castle n'avoir jamais pu apercevoir la moindre trace du canal central décrit par M. Ehrenberg, ni des branches qui en dérivent pour communiquer avec les

(1) Voyez dans le journal allemand l'Ist für 1836, p. 785, l'analyse de la communication faite par le Dr. Focke à la réunion des naturalistes allemands à Bonn, en 1835. M. Focke dit n'avoir pu aucunement distinguer l'intestin supposé dans le Stentor Müller, dans le Loxodes bursaria et dans une espèce de Vaginicola, et déclare que le mouvement évident des amas de nourriture ou de couleur à l'intérieur du corps de ces animaleus est incompatible avec la supposition de l'existence d'un intestin (Hier muss also eine andere organisation der Darmcanals, als die von Ehrenberg angegebene statt finden).

(2) Voyez le compte-rendu de l'Association britannique dans le journal anglais The Athénaêum, p. 567, p. 635.
petits sacs (*sacculi*), ajoute que, par de nombreuses observations, il s’est convaincu que dans la *Paramécie aurelie* et dans les espèces voisines, les petits sacs gastriques (les vésicules) se meuvent suivant une direction déterminée, tout autour du corps de l’animalcule, fait qu’ici lui-même, dit l’observateur anglais, paraît incompatible avec l’arrangement indiqué par le professeur de Berlin. A cela, M. Ehrenberg, sans recourir de nouveau à la comparaison des jouets d’enfant, a répondu qu’il est extrêmement difficile de voir le tube central (l’intestin), et que c’est seulement en suivant la marche des grosses masses de nourriture qu’il a été à même de le tracer.

Ce n’est pas là ce qui avait été dit d’abord, et moins encore ce qui avait été représenté sur les figures de 1830, reproduites en 1838. Mais, on le voit à présent, de l’avoué même de l’inventeur, toute la théorie de la structure intérieure des Infusoirés repose sur des figures idéales et sur des observations impossibles à vérifier sur les Infusoirés mêmes qui en avaient été l’objet. Et, qu’on y fasse bien attention, ces observations, cette découverte de l’intestin, ont été faites avant 1830 avec des instruments évidemment moins bons que ceux dont l’auteur s’est servi depuis, et qui lui ont fait découvrir l’armure de la bouche des *Nassula* et des *Chilodon*, et reconnaître les organes génitaux de tous les Infusoirés, et le filament locomoteur des Monadines et des Euglenes, etc. Or, un fait aussi important que celui qui servait de base à la physiologie et à la classification des Polygastriques, ne méritait-il pas, non pas dix, mais cent confirmations? ne devait-il pas être constaté cent fois avec les moyens d’observation que l’auteur nous dit être devenus entre ses mains de plus en plus puissans? ne devait-il pas surtout être exprimé clairement dans la plupart des figures, de manière à pouvoir être vérifié? Bien loin de là, ce fait, amoin- dri, et disparaissant presque dans la vaste étendue du grand traité des Infusoirés, est limité aux mêmes exemples cités précédemment et devenus en quelque sorte surannés par le fait même de l’auteur. Et M. Ehrenberg, dédaignant de répondre aux objections qui lui ont été faites depuis plusieurs années, traverse le continent pour aller à New-Castle entendre, en pré-
sence de l'Association britannique, des objections non moins instantes.

J'ai essayé, en 1835 (Ann. Sc. nat. déc.), de prouver la non-existence de l'intestin des Infusoires, par ce seul fait que, pour être aussi extensible et aussi contractile qu'on le suppose, il devrait contenir dans ses parois au moins quelques fibres qui persisteraient et deviendraient visibles quand l'Infusoire se décompose avec dilfluence? Or, disais-je, dans cette sorte de dissolution, on ne peut saisir absolument aucune trace d'intestin, et, de toute manière, ce phénomène de dilfluence tend à prouver davantage la simplicité d'organisation des Infusoires. Ayant vu, en 1836, des Nassula avaler de longs brins d'oscillaires qui se courbaient à l'intérieur, et les distendaient en manière de sac, je citai ce fait dans un mémoire suivant, comme prouvant, à la vérité, la déglutition que j'avais eu le tort de nier précédemment, mais aussi comme tout-à-fait inconciliable avec l'hypothèse d'un intestin et d'un vrai estomac. En effet, d'autres vésicules contenant des débris d'oscillaires se voyaient en même temps, entièrement indépendantes les unes des autres, et la grande vésicule, creusée par l'élasticité de l'oscillaire, communiquait avec la bouche par toute sa largeur, et non par un tube ou un rameau de l'intestin central. L'objection que je faisais alors contre l'existence d'un intestin dont les fibres auraient dû persister, je la fais encore aujourd'hui, d'autant plus que M. Ehrenberg insiste davantage (1) sur la grande contractilité de cet intestin, pour expliquer pourquoi on ne le voit jamais dans un grand nombre d'espèces : « c'est parce que, dit-il, ce canal, comme l'œsophage des gros animaux, sert seulement pour livrer passage aux alimens, et non pour les contenir ou les digérer, ce qui a lieu seulement dans les vésicules stomacales ; il s'élargit à volonté pour le passage de la nourriture, comme la petite bouche et le gosier d'un serpent qui avale un lapin, et se contracte aussitôt après et devient complètement invisible s'il n'est pas en action ». Mais, dira-t-on, si on admet la contractilité indéfinie des vésicules stomacales et leur action digérante, à plus forte

(1) Die Infusionsthierechen..., 1838, p. 362.
raison devra-t-on leur supposer une membrane assez complexe et contenant autant, sinon plus de fibres que l'intestin; or, ces vésicules, dans la décomposition par diffusée, ne montrent jamais de fibres: il faut donc en conclure, ou bien que la contraction s'opère sans fibres, ou bien que ces fibres sont réellement invisibles dans les vésicules comme dans l'intestin. Je vais prouver tout-à-l'heure que l'on doit considérer les vésicules comme des vacuoles creusées à volonté dans la substance glutineuse de l'intérieur, et que, par conséquent, elles sont sans membrane propre et se contractent par le rapprochement de la masse; je dirai que les prétendues vésicules diaphanes observées hors du corps des Infusoires ne sont que des globules de sarcode, sortis par expression ou par déchirement, ou par diffusée du corps de l'animalcul, comme le prouve leur réfringence et leur faculté de se décomposer en se creusant des vacuoles; mais il est un fait, un seul fait rapporté par M. Ehrenberg dans son troisième mémoire, en 1833, et que je n'ai pu comprendre en 1836 (Ann. sc. nat., avril 1836), non plus qu'aujourd'hui. Il s'agit d'une vésicule stomacale qui sortait d'une Bursaria vernalis, se décomposant par diffusée, et qui contenait encore deux fragment d'Oscillaires. C'est ainsi, du moins, qu'il l'a représentée alors (IIIe mém., pl. III, fig. 4 x), et il a reproduit la même figure, par conséquent le même fait, dans son grand ouvrage, en 1838.

M. Ehrenberg (1) regarde la séparation et l'isolement des vésicules stomacales comme ne devant surprendre que ceux qui n'ont point observé des vers de terre coupés en morceaux. Ces morceaux, dit-il, si petits qu'ils soient, se contractent à chaque extrémité, tellement qu'il en sort très peu des sucs contenus, et un pareil effet se produit par la contraction sur les estomacs isolés des Infusoires. Un fait, sans doute, est plus puissant que tous les arguments, et je regrette seulement que celui d'une vésicule contenant des fragments d'Oscillaires ne se soit pas présenté plusieurs fois à l'observateur; car pour ce qui est des pré-

(1) Die Infusionsthierchen... 1838, p. 361.
tendus estomacs sans alimens contenus, quand même ils paraissent légèrement colorés, la similitude si fausse des morceaux de ver de terre ne suffirait pas pour me prouver que ce ne sont pas des globules de la substance glutineuse de l'Infusoire, puisque j'ai vu souvent ces globules un peu colorés, soit qu'ils eussent une teinte propre, soit que cet effet fût le résultat d'une illusion d'optique ou d'un phénomène de couleurs accidentelles.

C. Expériences de coloration artificielle des Infusoi

Lors de mon premier mémoire sur les estomacs des Infusoir

Les Infusoir non ciliés, mais munis d'un ou de plusieurs filament flagelliformes locomoteurs, ont dépourvus de bouche et ne peuvent se nourrir que par leur surface extérieure; ainsi les Euglènes, les Cryptomonadines, les Vibrions et les Volvociens ayant un tégument perméable seulement aux substances dissoutes dans l'eau, ne peuvent jamais être colorés artificiellement par du carmin ou de l'indigo, dont les particules, relativement trop grosses, sont arrêtées par ce tégument. Et ceci doit paraître plus plausible que de dire, avec M. Ehrenberg, que ces animalcules n'aiment peut-être pas la couleur (1), car, comme je l'ai déjà dit dans mes précédens mémoires (1835), on ne peut

(1) Ehrenberg's Abhandl. I. 1830, p. 183. « Vielleicht liebt es diese Farben nicht. »
supposer à des Infusoirs quelconques un appétit particulier(1) pour une substance telle que l'indigo, qui ne peut être digérée. Les Monades, au contraire, et les autres Infusoirs non ciliés qui n'ont pas de tégumens, présentent près de leur surface des vacuoles variables, plus ou moins profondes, qui, donnant accès au liquide extérieur, multiplient la surface d'absorption et conséquemment aussi de nutrition. Des corps étrangers et des matières colorantes peuvent donc être entraînés avec le liquide dans ces vacuoles et rester engagés dans l'intérieur du corps, sans cependant être entrés par une bouche. On pourrait être surpris de voir des vacuoles ou prétendus estomacs plus chargés de couleur que le liquide environnant, si l'on ne considérait d'une part que ces animalcules se tiennent souvent contre les plaques de verre où la couleur est en plus grande quantité, et, d'autre part, qu'une vacuole, après s'être remplie par une large ouverture, peut s'être vidée lentement de manière à retenir les particules colorantes.

Ce mode d'explication, également applicable aux Amibes, je l'avais cru d'abord convenable pour tous les Infusoirs ciliés, d'après une analogie trompeuse, et surtout parce que certaines vacuoles se forment spontanément près de la surface, soit dans les Infusoirs à l'état normal, soit dans les Infusoirs mourans, et se remplissent d'eau seulement, à travers les mailles du tégument lâche des Vorticelles, des Kolpodes, des Paramécies, etc. Ces vacuoles, susceptibles de se contracter entièrement pour ne point revenir les mêmes, paraissent ne point différer, par leur structure, de celles que produit au fond de la bouche le

(1) Cette supposition d'un appétit particulier n'embarrasse pas le professeur de Berlin, qui va plus loin encore, en admettant qu'une Paramécie, dans un liquide coloré à-la-fois par de l'indigo et du carmin, choisit parmi les corpuscules tenus en suspension, tantôt les uns, tantôt les autres, pour en remplir exclusivement et à volonté tels ou tels de ses estomacs. Ce fait qu'il dit avoir observé quelquefois (zuweilen) lui paraît démontrer chez ces animalcules le sens du goût (Geschmacksinn). (Die Infusionsthierchen, 1838, p. 351); mais pour quiconque voudra considérer le mode d'intromission des aliments et des substances colorantes dans les Infusoirs, il paraîtra bien plus rationnel d'admettre que cette différence de coloration provient seulement de ce que l'animalcule s'est trouvé successivement dans divers endroits où, par suite d'une différence de densité ou d'un mélange imparfait, l'une ou l'autre des deux couleurs était en excès.
courant excité par les cils; ce ne sont également que des cavités non limitées par une membrane propre, mais creusées à volonté dans la substance charnue et contractile de l'intérieur. Souvent même les vacuoles formées au fond de la bouche paraissent remplir exactement les mêmes fonctions que celles de la la surface, c'est-à-dire qu'elles ne contiennent que de l'eau; de même aussi, dans ce cas, elles sont susceptibles de disparaître entièrement, en se contractant.

Ces vacuoles de la surface sont ordinairement rondes, très volumineuses et peu nombreuses; ce sont elles surtout qui peuvent présenter l'apparence de trous, mais, dans certaines espèces elles présentent un degré de complication bien remarquable; ce sont elles que Spallanzani avait soupçonné être des organes de respiration chez les Paramécies où elles ont la forme d'une étoile dont le centre et les branches se contractent alternativement; ce sont elles aussi que M. Ehrenberg a pris pour des vésicules séminales; mais il suffit de faire remarquer pour le moment qu'elles se multiplient singulièrement chez les Infusoirs mouvants et chez ceux qui sont un peu comprimés entre des lames de verre, comme si elles avaient en effet pour objet de multiplier les points de contact de la substance intérieure avec le liquide. Ce qui d'ailleurs prouve bien leur nature, c'est que très souvent ces vésicules se soudent et se confondent comme deux bulles de gaz ou mieux encore comme deux gouttes d'huile à la surface d'un liquide. J'ai représenté plusieurs exemples de ces réunions de vacuoles dans la planche 15.

Dans mon mémoire de 1836 (Ann. sc. nat., avril 1836), je revins sur la coloration artificielle des Kolpodes, dans lesquels j'avais vu le carmin occuper d'abord une bande irrégulière oblique à partir de la bouche, puis se circonscire en globules sur plusieurs points et se trouver successivement transporté aux extrémités du corps (Pl. 15). Je n'avais pu apercevoir la moindre trace d'intestin ou de tubes quelconques de communication; et, pour expliquer ces phénomènes, j'admettais une succession irrégulière de vacuoles, dans lesquelles le liquide extérieur avait pénétré avec les matières colorantes.

Ce qui me manquait alors, c'était d'avoir vu comment les va-
Couloles se produisent successivement au fond de la bouche, et comment ensuite elles parcourent un certain trajet dans l'intérieur du corps. Depuis cette époque, des observations nombreuses m'ont mis dans le cas de rendre compte entièrement du phénomène. Voici donc ce qui a lieu : quand une Paramécie, un Kolpode, un Glaucoma, une Vorticelle ou quelque autre Infusoire cilié commence à produire le mouvement vibratile destiné à amener la nourriture à la bouche (mouvement différent de celui qui détermine le changement de lieu), le courant produit dans le liquide vient heurter incessamment le fond de la bouche, qui est occupé seulement par la substance glutineuse vivante de l'intérieur ; il le creuse en forme de sac ou de tube fermé par en bas et de plus en plus profond, dans lequel on distingue par le tourbillon des molécules colorantes, le remous que forme au fond le liquide. Les particules s'accumulent ainsi visiblement au fond de ce tube, sans qu'on puisse voir en cela autre chose que le résultat physique de l'action même du remous. En même temps que le tube se creuse de plus en plus, ses parois formées non par une membrane, mais par la substance glutineuse seule, tendent sans cesse à se rapprocher en raison de la viscosité de cette substance, et de la pression des parties voisines. Enfin elles finissent par se rapprocher tout-à-fait et se soudent vers le milieu de la longueur du tube en interceptant toute la cavité du fond, sous la forme d'une vésicule remplie d'eau et de particules colorantes. C'est une véritable vacuole, une cavité creusées dans une substance homogène ; mais puisqu'elle renferme les aliments entrés par la bouche et que ses parois, formées d'une substance vivante, ont la faculté de digérer le contenu, on peut, si l'on veut, la nommer estomac. Ce ne sont point, d'ailleurs, les matières colorantes seules, que l'on voit se loger ainsi dans une vacuole au fond de la cavité buccale : divers corps étrangers, animaux ou végétaux, ou même d'autres petits Infusoirs vivans amenés avec le liquide par le tourbillon, peuvent également se trouver emprisonnés ainsi, et je crois même avoir observé que la séparation de la vésicule du fond a lieu plus promptement quand l'infusoire ressent le contact d'une proie plus volumineuse. Cependant on voit bien sou-
vent aussi, se former des vésicules ne contenant que de l’eau, et d’un autre côté, divers observateurs disent avoir vu des Infusoires avalés par de plus gros, être rendus à la vie et à la liberté; ce dernier fait, je n’ai pas eu l’occasion de le vérifier, mais j’ai vu des Infusoires demeurer long-temps vivants dans le corps de ceux qui les avaient avalés.

Aussitôt après que le rapprochement des parois a intercepté une vésicule à l’extrémité du tube partant de la bouche, le tube restant, devenu beaucoup plus court, recommence à se creuser par l’afflux continué du liquide, et la vésicule se trouve repoussée successivement par la substance qui la sépare du fond du sac, de sorte qu’une nouvelle vésicule venant à se former, doit se trouver presque à égale distance du tube restant et de l’ancienne vésicule. Celle-ci étant donc toujours repoussée par les vésicules formées successivement après elle, doit suivre à travers la substance molle et glutineuse de l’intérieur une direction dépendant à-la-fois de l’impulsion primitive, de la forme du corps et de la présence de quelques autres corps ou organes à l’intérieur. C’est ainsi que, dans les Infusoires allongés, tels que les Trachelius et Amphileptus, les vésicules se mouvront en ligne droite, et arrivées à l’extrémité dans une partie plus étroite, elles se réuniront, se fondront plusieurs ensemble, et finiront par évacuer au-dehors, tout ou partie de leur contenu, par une ouverture qui se forme à l’instant même et disparaît ensuite complètement. Dans les Infusoires dont le corps est globuleux, tels que les Vorticelles, les vésicules devront décrire un cercle et revenir se vider près du point de départ; dans les Infusoires ovaux-oblongs comme les Paramécies, après être arrivées à l’extrémité postérieure, en suivant un côté, elles reviendront jusqu’à l’autre extrémité, en suivant le côté opposé, puis reviendront encore et pourront décrire un circuit très complexe; dans les Kolpodes enfin, qui présentent en avant une saillie volumineuse prolongée comme un capuchon au-dessus de la bouche, les vésicules pourront venir s’accumuler en nombre considérable dans cette saillie. J’ai représenté dans la pl. 15 ces dispositions des vésicules remplies de carmin dans plusieurs types d’Infusoires, et j’insiste particulièrement sur l’analogie parfaite.
que présentent, sous ce rapport, les Vorticelles proprement dites, parce que leur organisation a été envisagée de diverses manières par de bons observateurs; et parce que M. Ehrenberg indiquant plus particulièrement les Vorticellines comme les Infusoires polygastriques qui montrent mieux l'intestin, on aurait pu être tenté de leur accorder cet organe, tout en le refusant aux autres Infusoires ciliés.

Il faut remarquer que la trajet parcouru par les vésicules à l'intérieur correspond assez bien à l'intestin qu'on y a supposé, et, véritablement, si M. Ehrenberg veut se borner aujourd'hui à dire que le passage successif de la nourriture lui a donné l'idée d'un intestin et ne plus dire qu'il a vu cet intestin, il aura seulement donné une fausse interprétation d'un fait incontestable et bien réel. Quand à ce que dit cet auteur du passage des aliments d'une vésicule dans une autre, en même temps qu'il nie la réalité du déplacement de ces vésicules, il est encore là dans l'erreur, car les vésicules se déplacent réellement en suivant le trajet indiqué ci-dessus, et si parfois elles communiquent entre elles, c'est seulement par la fusion complète de deux ou plusieurs vésicules en une seule, et non par le passage successif du contenu de l'une dans l'autre, ces vésicules demeurant distinctes. Cette fusion de plusieurs vésicules qui s'observe bien dans l'Amphileptus anser, prouve suffisamment, d'ailleurs, que les vésicules n'ont pas de membrane propre.

Les vésicules stomacales ou vacuoles, à l'instant où elles se forment, sont sphériques et gonflées de liquide; elles conservent ce caractère pendant un certain temps et parfois durant tout leur trajet, mais souvent aussi elles se contractent peu-à-peu en cédant le liquide contenu à la substance environnante, ou en la chassant à travers les parois du corps, et, après avoir présenté les particules colorantes ou les corps étrangers plus rapprochés avec un peu de liquide, elles finissent par disparaître comme vésicules, laissant les matières colorantes simplement interposées en petits amas irréguliers dans la substance charnue glutineuse. C'est ce qu'on voit surtout à la partie antérieure des Kolpodes, dix ou douze heures après qu'on leur a fait avaler du carmin.
Tel est le mécanisme du transport de la matière colorante et sans doute aussi du transport des aliments dans l'intérieur du corps des Infusores. Si on voulait considérer comme de vrais estomacs, ces vésicules sans membrane interne, sans communication directe avec l'intérieur et susceptibles de se contracter jusqu'à disparaître, alors, sans doute, on serait fondé à nommer *polygastriques* les Infusores qui les possèdent; mais encore faudrait-il reconnaître que cette dénomination ne pourrait s'appliquer à tous les Infusores, à ceux, par exemple, qui sont dépourvus de bouche, et à ceux, en général, chez lesquels on n'observe aucune intromission de matière colorante.

**CHAPITRE VII.**

*De la génération chez les Infusores.*

(A). *Division spontanée des Infusores.* — Des différents modes de propagation qu'on peut admettre chez les Infusores, un seul est bien constaté, c'est la fissiparité ou multiplication par division spontanée, et encore il n'a pas été observé dans tous les types de cette classe d'animaux. Les deux autres sont encore plus ou moins hypothétiques: c'est l'oviparité et la génération spontanée. On a bien signalé un fait de viviparité (1), mais ce fait est unique et tellement en désaccord avec ce qu'on connaît des autres Infusores qu'on doit hésiter beaucoup à l'admettre.

Le phénomène de la division spontanée des Infusores avait été vu d'abord par Beccaria et pris pour un accouplement; ce fut Saussure, en 1765, qui reconnut la vraie signification de ce fait. Dans les années suivantes, il se trouva bien encore quelques observateurs qui ne virent là qu'un accouplement; mais, depuis plus de soixante ans, ce mode de propagation, si extraordinaire qu'il pût paraître, a été généralement admis dans la science. Rien, en effet, n'est plus éloigné du mode de reproduction des animaux supérieurs et ne contrarie davantage les

---

(1) Le *Monas vivipara* de M. Ehrenberg dans son mémoire de 1836 (*Zusätze zur Erkenntnis*, etc., p. 22; et dans son *Traité des Infusores*, 1838, p. 10.

X. *Louv.* — *Novembre.*
lois de l'analogie, si l'on part de l'autre extrémité de la série du règne animal. Les gemmes, les bourgeois qu'on voit se détacher du corps des zoophytes peuvent encore être comparés jusqu'à un certain point avec les germes détachés de l'ovaire des animaux plus parfaits : le corps de l'animal mère, par le fait de cette production, même chez les Polypes, ne perd aucun de ses organes, aucune partie essentielle de l'individu. Dans les Infusoirs, au contraire, la division spontanée fait deux individus complets des deux moitiés d'un seul individu, et ces deux moitiés nous les voyons, suivant les espèces, se séparer tantôt en long, tantôt en travers, ou bien indifféremment de l'une de ces manières dans une même espèce. Certaines petites espèces de Nais ont montré un phénomène analogue, quoique avec plus d'uniformité ; mais, pour ne nous occuper ici que des Infusoirs, nous devons dire que leur multiplication par division spontanée prouve, on bien que le corps susceptible de se partager ainsi en deux moitiés, ne contenait pas d'organes essentiels, ou bien que s'il en contenait quelqu'un dans une de ces moitiés, cet organe a dû se produire spontanément dans l'autre moitié; car on ne peut croire que les organes de la partie antérieure, par exemple, se soient dédoublés pour envoyer une de leurs moitiés à la partie postérieure, à travers tous les organes intermédiaires, tandis que les organes dédoublés de la dernière partie auraient fait à la première un envoi correspondant. Or, l'une et l'autre supposition, inconciliables avec l'idée de développement d'un germe, arrivent également à l'appui des idées qu'on peut se former de la simplicité d'organisation des Infusoirs, dont toutes les parties réunissent en elles les conditions nécessaires pour continuer à vivre et à s'accroître après la séparation. Et en effet, ce ne sont pas seulement les deux moitiés prises en long ou en travers qui peuvent continuer à vivre séparément, mais encore tous les fragments dans lesquels un Infusoire est divisé accidentellement, comme le montrent, avec une très grande probabilité, les exemples rapportés plus haut.

Voyons toutefois, pour nous en tenir simplement aux faits, ce qui a lieu dans la division spontanée. Un Infusoire oblong,
F. DUIJARDIN. — Sur les Infusoires.

tel qu'une Paramécie, un Trichode, une Kérone, etc., présente d'abord au milieu un étranglement qui devient de plus en plus prononcé, puis la partie postérieure commence à montrer des cils vibratiles à l'endroit où sera la nouvelle bouche; puis cette bouche devient de plus en plus distincte, et la séparation s'achève en laissant voir la substance glutineuse intérieure, étirée jusqu'à ce qu'elle rompe. Les deux moitiés, primitivement courtes, arrondies ou comme tronquées, s'allongent peu à peu en s'accroissant et finissent par ressembler à l'animalcule primitif. Le phénomène, dans le cas de division longitudinale, se produit d'une manière analogue, sinon que les deux parties antérieures se séparent en dernier lieu. M. Ehrenberg, pour le besoin de ses théories, ayant supposé que les vésicules contractiles de la surface sont des organes génitaux mâles, ainsi que certains corps plus consistants, ovoïdes ou de toute autre forme situés à l'intérieur, a trouvé là un exemple de la division préalable des organes dans le cas de division spontanée : c'est que, en effet, les vésicules contractiles et les prétendus testicules sont susceptibles de se multiplier à tel point qu'on en voit toujours dans les diverses parties du corps de tout prêts pour les divisions futures.

On conçoit que, par ce mode de propagation, un Infusoire est la moitié d'un Infusoire précédent, le quart du père de celui-ci, le huitième de son aïeul et ainsi de suite, si l'on peut nommer père ou mère d'un animal celui qui revit dans ses deux moitiés; aïeul celui qui, par une nouvelle division, continue à vivre dans ses quatre quarts, etc., de sorte qu'un Infusoire est une fraction encore vivante d'un Infusoire qui vivait bien longtemps auparavant, et dont il continué la vie en quelque sorte. Il résulte de là qu'un corps étranger, logé dans la partie antérieure, par exemple, d'un Infusoire, pourrait être transmis indéfiniment à toutes les moitiés antérieures résultant des divisions spontanées successives, s'il n'était éliminé par excrétion; il en résulte aussi qu'une difformité, un accident quelconque, pourrait se transmettre de même, et qu'en un mot, la partie antérieure d'un Infusoire, dernier terme d'une série de divisions
Une telle considération conduit à demander si ce mode de propagation est vraiment illimité, ou si la vitalité provenant d'un premier germe ou d'une génération spontanée, se continue dans un Infusoire et dans ses subdivisions binaires jusqu'à un certain terme seulement, passé lequel tout s'éteint, de même que nous voyons les pucerons fécondés en une seule fois pour plusieurs générations successives mais non pour un nombre de générations indéfini? Une solution précise de cette question aurait une grande importance, par rapport à la question de la préexistence des germes ou de génération spontanée; peut-être est-elle impossible à obtenir; cependant on a vu déjà ce mode de propagation continué sans diminution apparente jusqu'à la huitième division au moins.

La division spontanée ne se présente pas aussi clairement chez tous les types d'Infusioires. Les Vorticelles ont, en même temps que ce mode de propagation, la faculté de produire des gemmes ou bourgeons, ce qui les rapproche véritablement des Polypes. Les Vibrions se divisent non en deux, mais en un nombre indéfini de parties qui restent contiguës à la suite les unes des autres, au moins pendant un certain temps. Beaucoup de Monadines n'ont pas encore paraître se diviser spontanément; d'autres, très probablement, doivent le faire comme les Amibes, par l'abandon d'une partie de leur substance; qui continue à vivres isolée. C'est également ainsi que se multiplient les Arcelles, et ce dernier exemple, constaté par M. Peltier, permet de penser que les Cryptomadines à test siliceux tels que les Trachelomonas peuvent se multiplier de même; on peut croire au contraire que les Euglena et les Peridinium sont tout-à-fait dépourvus de ce moyen de reproduction.

(—B—). Des œufs, des ovaires et des organes génitaux mâles.

— La science ne tire pas toujours un profit direct des efforts tentés prématurément pour arriver à la solution de certaines questions. C'est ainsi que toutes les discussions pour ou contre la génération spontanée des Infusioires ont laissé la question sta-
tionnaire, si même elles ne l'ont fait rétrograder. Cependant les faits s'ajoutent les uns aux autres; et, s'ils sont exacts, quand même, faute d'avoir été coordonnés par une logique rigoureuse, ils n'auraient fourni qu'un édifice informe: ce sont des matériaux qui, loin de perdre leur valeur, en acquièrent une nouvelle par des confirmations ultérieures, et qu'un architecte plus habile peut un jour mettre en œuvre avec succès.

Spallanzani, lié d'amitié et de pensée avec Bonnet, adopta et étendit les idées du naturaliste genevois sur la préexistence et l'emboîtement des germes, et il réduisit au néant les arguments de Needham sur la force végétative et sur la génération spontanée. Cependant les faits qui lui fournirent ses principaux arguments, tels que l'étude du poulet dans l'œuf, le volvox, etc., avaient été mal interprétés, et son argumentation porte à faux sur bien des points aujourd'hui. D'après ses expériences sur des Infusions soumises à l'ébullition (1) et tenues dans des vases hermétiquement fermés, il se crut fondé à admettre que les Infusoires les plus simples proviennent de corpuscules préorganisés ou germes susceptibles de résister à une ébullition de trois quarts d'heure, tandis que, les germes des Infusoires plus complexes, tels que les Paramecies et les Kolpodes, sont détruits beaucoup plus promptement. Les uns et les autres étant également susceptibles d'être transportés par l'air dans les infusions non scellées, qu'elles aient ou n'aient pas été préalablement bouillies. A la vérité, il parle aussi d'Infusoires qui auraient pondu des œufs (2), et qu'on pourrait croire, d'après sa description, être des Kolpoda cucullus; mais il est extrêmement probable que ce fait a rapport à quelque rotateur. L'observateur italien, dans un autre endroit (3), revient encore sur l'apparition des Infusoires qui se montrent indifféremment dans diverses sortes d'infusions, se détermine à penser qu'ils proviennent d'abord de quelques germes ou principes préorganisés apportés par l'atmosphère; mais, en même temps, il déclare formellement n'avoir aucune

(2) Même ouvrage, p. 217.
(3) Même ouvrage, p. 249.
certitude sur la nature de ces principes préorganisés, pour savoir si ce sont des œufs, des germes ou d'autres semblables corpuscules.

Gleichen, comme Ellis, avait bien vu la division spontanée des Infusoirs, et la regardait également comme un cas rare ou accidentel; il croyait que les Infusoirs les plus simples se forment spontanément par l'organisation d'une matière première (1), répandue dans toutes les eaux même les plus pures, mais qui ne se développent que dans les liquides, tels que les Infusions contenant des substances nutritives. Ces Infusoirs simples, il croyait les avoir vus se réunir en amas, jouissant d'une vie commune et susceptibles de s'entourer d'une enveloppe générale pour devenir des animaux d'un ordre un peu plus élevé, tels que ce qu'il nomme des Pendeloques (Kolpoda cucullus). Ces derniers, qu'il avait colorés artificiellement en leur faisant avaler du carmin, étaient suivant lui, désormais capables de se reproduire par des œufs, et c'étaient précisément les globules intérieurs, colorés par le carmin, qu'il prenait pour des œufs et qu'il avait espéré en vain voir éclore; mais on doit croire que ce qu'il avait pris pour la ponte des animalcules était simplement un effet de décomposition par diffusé, puisqu'il observait ses gouttes d'infusion sans les recouvrir d'une lame mince de verre comme on le fait ordinairement aujourd'hui.

L'opinion de Müller, qui dans ses longues recherches se montra généralement exempt d'esprit de système, aurait sans doute plus de poids dans cette question que celle de Gleichen; malheureusement, parmi les contradictions que son éditeur Fabricius a dû laisser subsister dans son ouvrage inachevé,

(1) Gleichen. Dissertation sur la génération, les animalcules, etc., trad. franç., p. 108 et suiv. (§ 83 — § 90). Suivant cet auteur (§ 83), c'est le mouvement qui est l'agent ou le principe, et ce sont les particules organiques contenues dans l'eau ou parties intimes et constitutives de l'eau (§ 88) qui sont les éléments de l'organisation. Celles-ci proviennent elles-mêmes de la décomposition d'autres êtres organisés. Le mouvement qu'il nomme intérieur résulte de la séparation des esprits et de la matière dans la fermentation des fluides, et met les particules organiques dans un mouvement de coction que Gleichen nomme mouvement radical. Les particules, ainsi mises en mouvement, se réunissent de nouveau en vertu de l'attraction ou de quelque autre moyen de juxtauction, pour s'élever à la vie animale par l'action de la substance spiritueuse qui s'en est dégagée (§ 90).
nous ne pouvons reconnaître au juste les idées qu’il aurait définitivement adoptées. Ainsi, tout en admettant bien positivement la multiplication des Infusoires par division spontanée, il parle encore, à l’article de plusieurs Infusoires, de leur accouplement, et cependant sa préface, qu’on pourrait croire écrite en dernier lieu, contient cette déclaration, qu’il n’a pu voir d’accouplement réel. D’un autre côté, tout en paraissant, par occasion, admettre comme Leeuwenhoek, une organisation complexe dans les plus petits vibrions ; il rapporte des faits qui tendent à prouver la génération spontanée de ces vibrions, et dans sa préface il expose toute une théorie de la génération spontanée. Les animaux et les végétaux, dit-il, se décomposent en particules organiques, douées d’un certain degré de vitalité et constituant des animalcules très simples, lesquels sont susceptibles de se développer comme des germes par l’adjonction d’autres particules, ou de concourir eux-mêmes au développement de quelque autre animal, pour redevenir libres après la mort et recommencer éternellement un pareil cycle de transmutations. Ces particules constitutives qu’il dit passer alternativement de l’état de matière brute à l’état de matière organique, il croyait bien les avoir vues dans la décomposition des animaux et des végétaux ; mais probablement il n’avait vu que le mouvement brownien des particules désagrégées.

Cette hypothèse, Muller la proposait seulement pour les Infusoires les plus simples, et tout au plus pour expliquer la première apparition des autres (les Bullaria) dans une infusion ; et cela ne l’empêchait pas d’admettre pour ceux-ci des œufs bien distincts ; mais, comme nous l’avons vu plus haut, ce qu’il a pris pour des œufs ou des ovaires, ce sont les vacuoles ou vésicules stomacales de l’intérieur, ou bien les exsudations de sarcode qu’on voit quelquefois en globules à l’extérieur.

Après ces trois naturalistes, ceux qui, comme Treviranus et Oken, ont traité la question de la reproduction des Infusoires, ont plus argumenté qu’ils n’ont observé eux-mêmes. Lamarck, par exemple, avait cherché à démontrer par le raisonnement, non-seulement que les animaux les plus simples peuvent se produire spontanément, mais encore que des êtres une fois produits
de cette manière peuvent acquérir un nouveau degré d'organisation qu'ils transmettent à des parties d'eux-mêmes, lesquelles sont susceptibles, en se développant à leur tour comme des germes, d'acquérir progressivement d'autres organes encore. Cuvier, dans l'éloge historique de cet illustre naturaliste, fit ressortir habilement toutes les inconséquences d'un tel système appuyé seulement sur l'observation des formes extérieures et développé par l'imagination.

M. Bory de St-Vincent avait assurément observé plus que Lamarck, cependant, dans sa théorie de l'organisation de la matière, il n'a pas su se tenir assez en garde contre son imagination, et, par conséquent, on ne peut accorder une autorité suffisante à ce qu'il dit d'après sa théorie sur la production spontanée des Infusoires.

Au nombre des partisans de la génération spontanée des Infusoires, on doit aussi compter dans ces derniers temps M. Fray qui, dans son essai sur l'origine des corps organisés (1817), poussa beaucoup trop loin les conséquences qu'il eût pu tirer de ses expériences, et M. Dumas qui, dans le Dictionnaire classique d'histoire naturelle, parut croire comme Gleichen que des Infusoires peuvent se former par la réunion des globules élémentaires, provenant de la décomposition de la chair musculaire mise en infusion. Il admettait bien, toutefois, qu'on ne faisait revivre ainsi que des substances qui ont déjà vécu, mais il prenait alors pour un signe de vie le mouvement brownien des molécules.

M. de Blainville d'un autre côté en indiquant des réformes essentielles dans la classe des Infusoires, se prononça, mais avec réserve contre les idées de génération spontanée.

M. Ehrenberg plus hardi, et se fondant sur les analogies les plus contestables, entreprit de prouver que les Infusoires ne peuvent provenir que d'œufs véritables; et, pour justifier l'ancien principe omne vivum ex ovo, il voulut démontrer chez ces animalcules l'existence de tous les organes génitaux qu'on trouve chez les animaux les plus complexes.

Reconnaissant avec raison que, chez eux, il n'y a pas accompagnement, ou concours de deux individus pour la fécondation,
il crut avoir le droit d’en conclure qu’ils devaient être hermaphrodites; puis, après s’être contenté d’abord de donner le nom d’œufs aux particules dans lesquelles un Infusoire se décompose par diffusion, il voulut nommer organes génitaux mâles, d’une part, des nodules on certains corps plus consistants, qui, se décomposant moins facilement quand l’animalcule vient à diffuser, durent être les organes sécrétaires ou les testicules; et d’autre part, les vacuoles contractiles et toujours remplies d’eau près de la surface, les mêmes que Spallanzani avait soupçonnées être des organes respiratoires, et qui furent des vésicules séminales.

Son principal argument pour démontrer la signification de ces derniers organes, c’est l’analogie des Rotateurs ou Systolides, analogie que je crois de tout point imparfaite, et qui est contredite même par le fait de l’existence des œufs qui chez ces derniers sont très volumineux proportionnellement, comme en général chez tous les animaux inférieurs où leur existence est démontrée, tels que les Helminthes, les Polypes, etc.; au lieu que les granules pris pour des œufs par M. Ehrenberg dans les vrais Infusoires, ces granules qui restent après la diffusion, sont chez quelques espèces parmi les plus grandes, gros de \frac{1}{1000} à \frac{1}{2000} de lignes, ce qui ne fait que \frac{1}{100} à \frac{1}{300} et même \frac{1}{400} de la longueur de l’animalcule (1). D’un autre côté, la signification donnée à la vessie contractile des Systolides est très contestable elle-même, comme celle de tous les organes qu’on a cru deviner à priori.

M. Ehrenberg qui déclare (2) n’avoir pu voir de communication vasculaire entre les prétendus organes génitaux des Infusoires, toujours à cause de leur délicatesse, et qui cependant, d’après des analogies quelconques, veut faire croire au passage d’une liqueur spermatique des testicules dans la vessie contractile, et de là par des canaux invisibles sur les œufs disséminés.

(1) Chez le Monas guttula, il fixe cette grosseur à 1/30 du diamètre de l’animalcule, ce qui fait 1/5760 de ligne.

(2) Ehrenberg. Zusätze zur Erkenntiss, etc. 1836, p. 17 « Da die Zartheit der hier auszuhandelnden Objekte bisher nicht erlaubte, den Gefäss-Zusammenhang dieser Organe mit den übrigen Körperteilen direct zu erkennen. »
F. Dujardin. — *Sur les Infusoirs.*

dans toutes les parties du corps ; qui n'a point vu d'animalcules spermatiques dans ces prétendus organes génitaux mâles, tandis que les distomes dont il invoque l'analogie, en ont montré à M. Siebold (1), qui n'a point vu éclore les prétendus œufs (2) et qui tout en reconnaissant que pour être fixé définitivement sur leur nature il faudrait avoir vu au moins des coques vides après l'éclosion, trouve dans leur couleur blanche, jaune, verte, bleue, brune ou rouge, un argument suffisant pour se prononcer ; M. Ehrenberg, dis-je, a été conduit à interpréter ainsi les parties réelles ou supposées des Infusoirs, par le seul besoin de compléter l'organisation de ces êtres, ou tout au plus par de fausses analogies, telle que celles des Rotateurs, des Planaires, et des Distomes. Il fait servir les œufs à prouver la signification des organes mâles, puis, prenant celle-ci pour démontrée, il s'en sert pour démontrer la signification réelle des œufs : et, c'est après avoir ainsi tourné plus d'une fois dans un cercle vicieux qu'il dit avec assurance : « En démontrant depuis 1832 la présence des glandes sexuelles mâles et des œufs dans tous les individus d'une espèce quelconque d'Infusoirs, et la manière dont ces organes se composent dans la division spontanée, je crois avoir acquis une base scientifique solide pour ces recherches ; la réalité d'une fécondation que l'éclosion, encore en 1820, regardait comme un argument contre l'existence de véritables œufs, trouvera dans ces rapports confirmés par la remarquable vessie contractile, un appui d'une solidité incontestable jusqu'à ce qu'il ait été complète-ment démontré que les granules pris par moi pour des œufs, laissent effectivement éclore des jeunes Infusoirs en forme de *Monades*, ou bien jusqu'à ce qu'il ait été positivement démontré

(1) Müller's Archiv. fur Anatomie, 1836, p. 51.

(2) Il s'exprime ainsi dans son mémoire de 1836 (Zusätze zur, etc., p. 6) : « L'éclosion d'un jeune animal poly gastrique sortant d'un de ces œufs, laquelle en fixerait une fois pour toutes la nature, ou même des coques laissées vides après l'éclosion, n'ont point encore été observées, parce que leur extrême petitesse y oppose une grande difficulté ; mais tous les phénomènes observables, tous les rapports et jusqu'à la couleur ordinairement vive et souvent verte, jaune, bleue, brune, rouge ou laiteuse du vitellus permettent de croire, avec une extrêmement grande vraisemblance, que telle est leur signification. »
F. DUJARDIN. — Sur les Infusoirès. 299

« que leur nature est différente. Des opinions sans observations « exactes, n'ont en vérité absolument aucune valeur (Infusions- thierchen... 1838 p. 382). »

Si une pareille argumentation pouvait être acceptée par les juges compétens, et s'il était admis qu'un auteur eût le droit de donner l'autorité de la vérité à des opinions plus ou moins probables sinon hypothétiques, en récusant d'avance toute objection de quiconque n'aurait pas préalablement démontré la vraie nature des objets en litige, il faut convenir que le cas serait bien choisi : en effet, il n'est pas présumable que de long-temps on parvienne à démontrer (et il faudrait cela) des communications vasculaires, autres que celles supposées par l'auteur allemand dans les prétendus organes génitaux des Infusoirès, ni que l'on démontre la vraie structure de ce qu'il prend pour des œufs, car il est physiquement impossible dans l'état actuel de nos connaissances optiques de déterminer seulement la forme exacte d'un corps globuleux ou polyédrique de 1|2000 de ligne (1|900 millimètre environ. (1)

Mais suivons cet auteur lui-même dans le développement de ses opinions sur la génération des Infusoirès ; c'est le meilleur moyen d'apprécier au juste ses assertions Dans son premier Mémoire (1828-1830), sur la distribution géographique des Infusoirès, il s'efforce de prouver que les germes de ces animalcules ne peuvent être apportés par l'atmosphère (2) dans les infusions, ce qui, tout en contrariant l'opinion de Spallanzani, ne

(1) On peut déterminer approximativement avec assez d'exactitude, l'épaisseur d'un filament beaucoup plus mince, mais on ne peut prendre l'idée de sa structure ; les corpuscules sanguins ont au moins 1|150 mill ; les petits grains de pollen dont on apprécie bien la structure ont 1|50 mill. et plus ; d'autre côté, des sémiumiles de moisissures de 1|600 mill, ne montrent rien de distinct à l'intérieur, à plus forte raison il doit en être de même des prétendus œufs de polygastriques.

(2) Die geographische Verbreitung der Infusionsthierchen, etc., 1828-30, p. 13. Il dit n'avoir pu trouver un seul Infusoire dans l'eau de la rosée nouvellement recueillie ; mais, pour que l'expérience put réellement être comparée avec celle de Spallanzani, il eût fallu mettre l'eau de cette rosée pure, des matières organiques soumises à un certain degré de chaleur ; de cette manière, les germes s'ils étaient dans la rosée, auraient pu se développer. Il est présumable d'ailleurs que de la rosée recueillie près d'une grande ville ou dans la ville même et conservée seule pendant quelque temps eût pu donner un résultat différent.
permettrait pas de voir dans les expériences faites avec tant de soin par le célèbre professeur de Pavie, autre chose qu'une génération spontanée ; mais dans ce cas, encore, je crois que M. Ehrenberg s'est trop hâté de tirer une conclusion générale de quelques expériences faites en voyage avec des instrumens imparfaits. Dans ce même Mémoire, où il veut établir des lois générales sur la distribution géographique des Infusloires, il nous apprend que toutes les infusions qu'il a préparées lui-même près de la Mer-Rouge et du mont Sinaï, lui ont donné précisément les mêmes espèces d'Infusloires qu'en Europe ; ce qui semblerait plutôt favoriser les idées des partisans de la génération spontanée qu'indiquer une différence réelle dans la distribution géographique des Infusloires. Dans le Mémoire publié avec le précédent (1830), sur la connaissance de l'organisation des Infusloires, il avait pris la diffuslce du Kolpoda cucullus pour la ponte de cet animalcule, et il avait représenté (pl. 3, fig. 14), le prétendu ovaire comme un réseau formé de fibres de 1⁄10000 de ligne. Il s'appuyait de l'observation des Rotateurs, seulement pour prétendre, que tous les Infusloires naissent d'un œuf, et croyait avoir suffisamment prouvé l'absurdité de la génération spontanée ou équivoque, en accordant à tous les Infusloires, même aux monas termo une organisation très complexe. Il déterminant par le calcul les dimensions des estomacs des plus petits Infusloires, et supposait des particules alimentaires de 1⁄10000 de ligne, destinées à remplir des estomacs de 1⁄1000 de ligne ; il fixait enfin la grosseur de leurs œufs, qui devait être de 1⁄6000 de ligne ; le tout sans s'inquiéter des limites probables de la divisibilité des substances organiques et de l'influence que peuvent exercer de si petites dimensions sur les phénomènes physiques.

Dans son second Mémoire (1832), sur le développement et la durée de la vie des Infusloires, il se propose plus spécialement de combattre la génération spontanée, bien qu'il crût déjà l'avoir complètement anéantie par sa précédente argumentation. Il déclare avoir constaté que la génération de ces êtres est normale, et qu'elle a lieu au moyen d'œufs ; mais chose singulière ! il ne parle encore que des œufs si gros, si incontestables des Rotateurs et en particulier de l'Hydatina senta ; quant aux Infusloires
proprement dits, il n’a point vu éclore leurs œufs; bien loin de là, il prouve par des expériences prolongées durant neuf ou dix jours qu’il n’y a pas eu d’autre propagation que celle par division spontanée. Car on devra convenir que c’est un fait embarrassant pour les partisans de l’oviparité que de voir constamment dans une même infusion, tous les individus d’une même espèce à-peu-près de la même grosseur, ou bien montrant s’ils sont plus petits, les traces d’une division récente, comme si tous avaient dû éclore au même instant et comme si l’éclosion des œufs était désormais ajanée jusqu’à ce qu’une nouvelle infusion soit préparée. Eh bien! c’est là tout ce qu’a vu M. Ehrenberg dans ses expériences, peu nombreuses à la vérité, sur deux espèces d’Infusoires proprement dits. Il a vu dans deux tubes de verre un seul individu de Paramecium aurelia se diviser spontanément trois fois dans vingt-quatre heures, d’où résultaient huit individus, lesquels continuèrent à se diviser ainsi pendant plusieurs jours de manière à remplir le tube d’individus tous semblables à l’animalcule primitif, tous produits de la même manière et sans aucun mélange d’individus plus petits qui seraient provenus d’œufs; il dit même très positivement à la page 11: « Je n’ai pas observé qu’il soit né des individus provenant d’œufs. »

Le Stylonychia mitylus (Kerona mitlylus Müller) lui a présenté une seule fois les mêmes résultats d’une manière incomplète. Aussi, a-t-il soin de dire, qu’il ne peut rien en conclure touchant la durée de sa vie; cependant il passe un peu plus loin (page 12) à des conclusions générales et tout-à-fait affirmatives. Suivant lui, la force reproductive des animaux Infusoires est plus développée que dans aucune autre classe d’êtres, et pour expliquer leur multiplication rapide en très peu de temps, il n’est plus besoin de la génération spontanée qui, d’après ces nouvelles observations paraît une hypothèse superflue et que n’appuie aucune observation certaine. Voilà un des nombreux exemples de la logique de M. Ehrenberg, et de sa tendance à généraliser. Il a la franchise de nous dire qu’il n’a vu aucun indice de la multiplication par les œufs dans deux espèces de polygastriques, et il conclut que tous les Infusoires polygastriques doivent provenir d’œufs; mais admettons son observation.
comme exacte, et cela d'autant plus volontiers qu'elle a été faite de la même manière par Saussure en 1769 : ne serait-il pas plus simple d'admettre que ces Infusaires se sont produits une première fois spontanément dans une infusion à un certain degré de fermentation, ou qu'ils proviennent du développement successif de quelque autre forme produite elle-même spontanément dans cette infusion, et que, arrivés à un certain degré de développement, ils ont pu seulement se multiplier par division spontanée (1) ; mais je me hâte de le dire, je n'adopte pas cette idée non plus que celle des œufs, j'ai voulu seulement mettre une opinion probable à côté d'une opinion probable, et j'attends des faits pour me prononcer sur un sujet aussi important. Je conviens volontiers qu'aucun observateur digne de foi n'a vu se former un Infusaire sans ses yeux ; je crois même qu'il serait absurde de supposer qu'un animalcule si simple fût-il, se formât ainsi par une agrégation de moléculles par une sorte de cristallisation ; mais je ne crois point du tout à la vraie nature des œufs en question, et si problématiques.

Il ne serait pas impossible assurément que les particules organiques provenant de la décomposition des Infusaires, celles-là même que, dans quelques espèces, M. Ehrenberg prend pour des œufs, pussent servir à la reproduction des Infusaires ; mais ce ne seraient pas des œufs pourvus, comme on l'entend, d'une double enveloppe, d'un albumen, d'un vitellus et d'une vésicule germinative ; ce seraient les plus simples des germes, ce que, peut-être, Spallanzani entendait nommer des Corpuscules pré-organisés ; ce seraient ce que d'autres ont appelé des globules

(1) De ce que dans les observations citées on n'a vu dans le liquide que des animalcules de même grosseur, on doit conclure aussi qu'il ne s'est point opéré, pendant la durée de l'expérience (9 à 10 jours), de génération spontanée, non plus que d'éclosion d'œufs ; mais, pour peu qu'on ait l'habitude d'observer des infusions, on doit savoir qu'un certain degré de fermentation ou de putréfaction est nécessaire pour l'apparition de certains animalcules qu'on ne voyait pas auparavant et qu'on cesse quelquefois même aussi de voir plus tard ; soit qu'ils aient été remplacés par d'autres, soit qu'ils aient subi une certaine modification relative. Pour que les mêmes raisonnements fussent applicables aux œufs des Paramécies, il faudrait admettre que ces animalcules, au sortir de l'œuf, ne sont pas encore des Paramécies, mais des animalcules plus simples vivant dans l'infusion à un autre degré de fermentation ; alors on arriverait de conséquence en conséquence à l'opinion citée plus haut.
élémentaires; des molécules qui ayant joui de la vie, sont susceptibles de recommencer, suivant l'expression de Müller, un cercle déjà parcouru.

Je ne crois pas impossible non plus, d'après ce que j'ai vu des changemens qu'éprouvent les Infusoires suivant la nature des infusions, je ne crois point impossible que ces petits germes parcourent une série de développemens plus ou moins considérables avant d'arriver au degré le plus élevé, et qu'ils ne puissent aussi, suivant l'état de l'infusion rester stationnaires dans un degré inférieur. Cette manière de voir, à laquelle je suis conduit par mes observations, sans y être définitivement arrivé, a plus d'un point de ressemblance avec celle de M. Ehrenberg qui a signalé le premier les formes diverses sous lesquelles se montre le Kolpoda cucullus avant d'avoir atteint le terme de son développement ; si cet auteur ne tenait pas beaucoup à la signification de ces œufs d'Infusoires, on pourrait même finir par ne voir dans cette discussion qu'une querelle de mots. Mais je reviens à l'examen des opinions successivement développées par M. Ehrenberg sur les organes génitaux des Infusoires.

Dans son troisième Mémoire (1833), il représente plusieurs fois la diffusio des Infusoires comme la ponte ou l'émission des œufs, et parle plus positivement des granules qu'il prend pour les œufs, lors même qu'ils ne se montrent que comme une matière colorante uniformément répandue ; tandis que, dans son premier Mémoire, le résultat de la diffusio ou de la ponte du Kolpode était représenté seulement comme un réseau de fibres. Puis, parmi les vésicules intérieures prises d'abord indifféremment par des estomacs (1), il choisit les plus grandes, les plus subitement contractiles, celles qui ne contiennent jamais que de l'eau, et en fait des organes sexuels mâles. Quand il eut aperçu plus tard les prétendus testicules, les vésicules contractiles ne furent plus pour lui qu'un organe

(1) Elles se distinguent des estomacs également contractiles, parce qu'elles ne se remplissent jamais comme ceux-ci de nourriture colorée, et restent tout-à-fait transparentes (Ehrenberg, 1836. Zusatzezcezur, etc. p. 9).
d'éjaculation, et leurs contractions brusques durent avoir pour objet de lancer sur les ovaires répandus partout le corps, leur contenu si abondant, arrivé on ne sait d'où. Si ce singulier mode de fécondation intérieure par des éjaculations si copieuses et si fréquentes était cru véritable, on devrait convenir au moins que la nature nous a accoutumés à la trouver plus avare et plus simple dans ses moyens.

Ces vésicules contractiles qu'on voit simplement globuleuses dans la plupart des Infusoires, se montrent avec une forme plus complexe ou une disposition particulière dans quelques espèces: Dans les Paramécies aurélies, elles constituent, comme je l'ai déjà dit, les organes en étoile que Spallanzani croyait destinés à la respiration, et dont il décrit ainsi le mouvement régulier et alterné: « à tous les trois ou quatre secondes, les deux petits globes centraux se gonflent comme des utricules et deviennent plus gros du triple ou du quadruple, et l'on aperçoit le même changement dans les rayons des étoiles, avec cette différence, que lorsque les petits globes s'enflent, les rayons se désenflent (1). » M. Ehrenberg les a vues de la même manière dans les Paramécies, où je les ai également étudiées avec soin; mais, de plus, il a signalé aussi la présence de vésicules contractiles en étoile dans trois autres espèces (Bursaria leucas, Ophryoglena atra et Glaucoma scintillans), et il a indiqué une vésicule à bord perlé ou moniliforme dans la Nassula ornata.

Les vésicules en étoile dont il discute la signification dans son Mémoire de 1836, p. 9 (2), lui ont particulièrement paru dé-

---


2) Il s'exprime ainsi à la page 11 du mémoire cité (Zusätze zur Erkenntiss, etc.) « Il est difficile de se représenter clairement la connexion de ces organes avec le système auquel ils appartiennent. Mon opinion individuelle est la suivante: les vésicules contractiles sont les extrémités élargies du canal défèrent (non encore aperçu), qui vient du testicule. Dans les cas les plus ordinaires, ces extrémités élargies et contractiles s'abouchent immédiatement dans l'oviducte, comme chez les Rotateurs, conséquemment leur forme est également simple. Mais, dans d'autres cas, l'ovaire peut bien communiquer avec plusieurs oviductes qui se réunissent de nouveau à l'orifice sexuel. D'après cela, la vésicule contractile pourrait bien être liée avec les cauxen en étoile, qui, de cette vésicule, conduisent aux différents oviductes. Si l'on considérerait aussi les vésicules contractiles simples comme pourvus de plusieurs orifices correspondant aux oviductes et s'y abouchant, alors disparaîtrait la différence (le restant, Schrōff-
montrer la réalité d'une éjaculation qui serait dirigée par les branches sur les divers oviductes, tandis que la vésicule centrale serait l'extrémité élargie du conduit déférent. Conséquemment, il supposé aussi que les vésicules simples doivent éjaculer leur contenu par des ouvertures percées dans leurs parois, ouvertures invisibles qu'il ne craint pas d'admettre, tandis qu'il nie la possibilité du passage de l'eau à travers les mailles du tégument, dans le cas où les voudrait considérer avec Spallanzani comme des organes respiratoires. Mais que l'on considère leur multiplication dans les Infusoires mourans, ou dans ces animaux simplement comprimés entre deux lames de verre et privés des moyens de renouveler le liquide autour d'eux; que l'on se rappelle leurs rapides contractions et même leur complète disparition qui ont frappé tous les observateurs; que l'on songe enfin à la manière dont elles se soudent et se confondent plusieurs ensemble, et l'on ne pourra s'empêcher d'y reconnaître des vésicules sans tégument ou des vacuoles creusées spontanément près de la surface, pour recevoir, à travers les pores du tégument, le liquide servant à la respiration.

La pluralité des vésicules contractiles a été interprétée par M. Ehrenberg comme un indice de prochaine division spontanée; mais le fait de la soudure des vésicules apparaissant chez les Infusoires mourans n'a pas même été mentionné par lui.

Dans son mémoire de 1833, M. Ehrenberg ne figura point encore ce qu'il nomme la glande séminal, le testicule; mais il la mentionna dans le texte seulement à l'article du Chilodon cucullulus, du Paramecium aurelia, et des trois Nassula, comme une découverte toute récente. C'était, disait-il, un corps glandulaire, diaphane, ovale oblong, situé près de la bouche, et ne présentant aucune connexion avec les autres organes; dans son mémoire de 1836, il poursuivit chez tous les Infusoires la recherche de cet organe qui devait compléter leur système sexuel mâle, et il a prétendu l'avoir trouvé presque partout.
mêmes chez les Euglènes qui n'ont pas de vésicule contractile ou séminale. Aussi ne s'est-il pas montré difficile pour la détermination de cet organe; non seulement il y rapporta les gros globules en chapelet des Stentor polymorphus et ceruleus et de son Amphi leptus moniliger, les bandes sombres plus ou moins contournées dans l'intérieur du corps du Stentor Müller, de plusieurs Vorticelles et Bursaires, et les corps ovoïdes ou globuleux paraissant plus denses ou plus consistants, dans la plupart des autres Infusores; mais encore il désigna ainsi les corpuscules en petites baguettes de l'Amblpyophis et de quelques Euglena, ceux très nombreux et en petits anneaux de l'Euglena spirilgra, le disque observé dans l'Euglena pleuronectes et une foule d'autres corpuscules non moins problématiques observés dans l'intérieur du corps des Infusores, et qui n'ont d'autres titres à cette distinction que le besoin qu'en a l'auteur pour compléter sa série. Plusieurs de ces corpuscules persistant après la diffusée des animales, furent pris par Müller pour des œufs; la plupart sont jusqu'alors restés sans signification et pourront bien être encore long-temps considérés comme tels, par les naturalistes qui voudront considérer la solidité des arguments du professeur de Berlin pour assigner une même fonction à des corpuscules si divers et sans connexion aucune avec les autres organes.

Quant à moi, j'ai bien vu dans un grand nombre d'Infusores, notamment dans les Stentor, les Trichodines, les Vorticelles, les Euglènes, les Oxytricha, les Stylonychia, etc., les corpuscules en question; j'ai bien vu que, dans les Infusores diffus, ils résistent plus à la décomposition spontanée que ne devrait le faire un corps glanduleux comparativement aux autres parties que leur contractilité devrait rapprocher de la chair musculaire des Mollusques; mais je n'ai pu me faire une idée de leurs fonctions dans l'organisme, non plus que celles des diverses sortes de granules qui restent après la diffusée d'un Infusoire. Je suis bien disposé à croire qu'il doit y avoir là des corpuscules reproducteurs, mais je ne saurais les distinguer parmi les granules simples, qui sont probablement un produit de sécrétion, parmi ceux qui ont pénétré comme aliments ou comme corps étranger dans l'animalcule vivant, et enfin parmi les concrétions ou les
F. DUJARDIN. — Sur les Infusoirs.

crystallisations produites à la surface de l'Infusoire par les matières terreuses dissoutes dans l'eau (1). A la vérité, M. Ehrenberg, en outre de leur coloration, attribue à ses prétendus œufs une grosseur uniforme dans chaque espèce, et prétend qu'ils se développent et disparaissent périodiquement; mais je n'ai pu constater ces derniers faits.

En définitive, je pense donc qu'à partir le fait incontestable de la division spontanée des Infusoirs, nous ne savons rien de précis sur la génération de ces animaux, ni sur les organes qui peuvent servir à cette fonction, ni sur les œufs qui doivent les reproduire. Serait-ce à dire qu'il faut croire à leur production spontanée? non sans doute, si on l'entend à la manière de Lamarck, ou si l'on veut que les éléments chimiques se soient rencontrés pour former une combinaison douée de la vie, ce qui serait universellement, je crois, regardé comme une absurdité; mais peut-être pourrait-on se rapprocher de la manière de voir de Spallanzani, qui tout en combattant les idées absurdes de quelques-uns de ses contemporains, se trouvait conduit par ses expériences, si consciencieusement faites, à admettre que les Infusoirs naissent de corpuscules préorganisés, apportés par l'air dans les Infusions, et susceptibles de résister à certaines actions physiques qui détruiraient des œufs proprement dits; corpuscules que lui-même n'ose pas nommer des germes ni des œufs; tandis que d'un autre côté il suppose que «pour des animaux inférieurs (2), le changement de demeure, de climat, de nourriture, doit produire peu-à-peu dans les individus, et ensuite dans l'espèce, des modifications très considérables, qui déguisent à nos yeux les formes primitives.»

(1) M. Ehrenberg a vu des cristaux sur certains Infusoirs; j'ai vu, de mon côté, fort souvent des petits cristaux de sulfate de chaux sur les animalcules habitant des eaux très chargées de ce sel, comme sont les eaux de Paris concentrées par l'évaporation spontanée.

CHAPITRE VII.

De la circulation et de la respiration chez les Infusoirés, de leurs sens, de leurs nerfs et de leur instinct.

Corti, en 1774, trompé par le mouvement ondulatoire des cils qu’il ne pouvait distinguer eux-mêmes à la surface des Infusoirés, admit une circulation réelle chez ces animaux ; d’autres observateurs, plus récemment, ont commis la même erreur, ou bien ont été dupes de quelque autre cause d’illusion. M. Ehrenberg, lui-même, qui dans son troisième mémoire avait cru reconnaître sur le Paramécium aurelia un réseau vasculaire, renonce dans son traité des Infusoirés (p. 351) à cette supposition, et pense que ce pourrait être le réseau de l’ovaire ; et si dans la description de presque tous ses genres, il mentionne le système vasculaire, c’est pour répéter chaque fois qu’on n’a pu jusqu’ici le reconnaître directement, ce qui n’empêche pas toutefois d’en admettre l’existence et de s’écrier avec admiration en parlant de Microglena (1) : « Mais quelle ténuité doivent avoir les vaisseaux de ces petits animaux ! »

Quant à la respiration, elle paraît plus réelle chez les Infusoirés soit qu’on admette d’après Spallanzani que les vésicules contractiles sont destinées à cette fonction ; soit qu’on admette d’après l’analogie de beaucoup d’animaux inférieurs que le mouvement vibratile des cils peut n’y être pas étranger en même temps qu’il sert à la locomotion et à la production du tourbillon qui amène les aliments. On ne peut douter que ces animalcules aient besoin de trouver de l’air respirable dans l’eau ; les expériences faites par M. Peltier (2) sur l’asphyxie de ces animalcules, tendent à le prouver, ainsi que ce que j’ai rapporté plus haut sur la manière dont se comportent des Infusoirés légèrement comprimés entre des lames de verre.

Nous avons vu à la page 308 ce qu’on peut penser du sens

---

(1) Die Infusionsthierchen... 1838, p. 26.
(2) L’Institut, 1836, n. 158, p. 158.
du goût découvert par M. Ehrenberg chez les Infusoires. Le
sens de la vue, découvert par le même naturaliste, aurait plus
de réalité s'il suffisait de la coloration d'une tache sans organi-
sation appreciable, sans forme constante, sans délimitation pré-
cise, pour prouver que ce doit être un œil. Mais dans les Euglè-
nes, par exemple, qui sont particulièrement cités comme carac-
térisées par cet organe, la tache rouge qu'on prend pour un œil
est excessivement variable; elle est quelquefois multiple,
quelquefois formée de grains irrégulièrement agrégés.

L'analogie se trouve encore ici en défaut sur ce point; car, si
l'on descend dans la série des animaux, on se trouve forcé, pour
la détermination de cet organe, de sauter brusquement des
Daphnies, qui ont encore un œil mobile rappelant par sa com-
position celui des Insectes et des Crustacés; ou bien des Mollus-
ques, dont l'œil, pourvu d'un cristallin, est comme dérivé du
type de l'œil des vertébrés; on se trouve, dis-je, forcé de passer
da des animaux ne présentant plus que des taches diffuses. Ces
taches, soit par leur nombre, soit par leur position, ont si peu
d'importance physiologique dans les Planariées et dans certaines
Annelides, que souvent on ne pourrait même en faire un carac-
tère spécifique absolu. Chez les Systolides ou Rotateurs, dont
l'analogie est plus particulièrement invoquée, on les voit dispa-
raître avec l'âge pour quelques espèces, et, pour d'autres, se
montrer plus distinctes, suivant le volume ou le développement
des individus, de sorte que le savant micrographe de Berlin
ayant voulu baser ses caractères génériques pour ces animaux
sur la présence et le nombre des yeux, a été conduit à mettre
dans des genres différents, certaines espèces très voisines sinon
identiques. Que la couleur rouge ou noire soit en général un
attribut du pigment des yeux, ce ne doit pas être une raison pour
supposer un œil partout où l'on voit du rouge, sinon il en fau-
drait accorder même à des vers intestinaux, tels que le Scolex
 polymorphus, qui a deux taches rouges au cou, aux Actinies,
qui souvent en sont toutes parsemées, aux Mollusques bivalves,
tels que les Peignes, etc.

Si l'on invoquait la faculté qu'ont les Infusoires de se diri-
ger dans le liquide et de poursuivre leur proie, au moins
faudrait-il vérifier d’abord la réalité de cette faculté, que je crois aussi fabuleuse que tout ce qu’on rapporte de l’instinct de ces animalcules. Et encore cela ne suffirait pas pour prouver que les points rouges sont des yeux, car le plus grand nombre des Infusoires auxquels on a supposé cette faculté en sont dépourvus, et ceux qui en présentent, au contraire, n’ont point montré cette faculté plus développée.

M. Ehrenberg, suivant sa méthode d’argumentation, après avoir supposé la signification des points rouges, s’en est servi pour démontrer la vraie signification de certaines taches blanches plus ou moins distinctes qu’il prend pour un cerveau ou tout au moins pour un ganglion nerveux; c’est là tout ce qu’on dit avoir vu du système nerveux chez les Infusoires, tout le reste est fourni par l’analogie.

Nous ne devons pas, je pense, nous arrêter à combattre plus long-temps toutes les suppositions qui ont été faites sur l’instinct de ces animaux; la plupart des faits anciennement cités sur cet objet sont controuvés: le fait, par exemple, rapporté par Spallanzani, de certains Infusoires venant aider à la séparation des deux moitiés d’un de leurs semblables en voie de se diviser spontanément, ne supporterait pas aujourd’hui un sérieux examen. Le fait du groupement des Infusoires du genre Uvella s’explique tout naturellement par la division spontanée, et celui de la réunion d’Infusoires d’abord libres, s’il n’est pas le résultat de l’évaporation du liquide ou de quelque circonstance fortuite, pourrait s’expliquer tout aussi facilement. Quant à l’acte de chercher et de choisir des alimens, il est, comme je l’ai dit plus haut, le résultat de l’action mécanique des cils, produisant dans le liquide un courant dirigé vers la bouche.

Résumé.

A la fin de cet exposé des faits réels ou supposés que nous avons dévoilés le microscope sur l’organisation des Infusoires, il convient d’exposer en peu de mots ce que nous savons de positif sur ces animaux, en les séparant, comme nous l’avons fait, des
Systolides ou Rotateurs qui sont bien plus élevés dans la série animale, et des Bacillariées, qui présumentalement, ainsi que les Clostériées, sont beaucoup plus rapprochées du règne végétal, et qui, dans tous les cas, doivent constituer une classe à part.

Les Infusoires qu'il faudra, je crois, continuer à nommer ainsi, se produisent, pour la plupart, de germes inconnus, dans les infusions soit artificielles, soit naturelles, telles que l'eau stagnante et celle qui, dans les rivières, séjourne entre les débris de végétaux. On ne leur connaît aucun autre mode de propagation bien avéré que la division spontanée. La substance charnue de leur corps est dilatable et contractile comme la chair musculaire des animaux supérieurs, mais elle ne laisse voir absolument aucune trace de fibres ou de membranes, et se montre au contraire entièrement diaphane et homogène, sauf le cas où la surface paraît réticulée par l'effet de la contraction.

La substance charnue des Infusoires, isolée par le déchirement ou la mort de l'animalcule, se montre dans le liquide en disques lenticulaires ou en globules réfractant peu la lumière, et susceptibles de se creuser spontanément des cavités sphériques analogues par leur aspect aux vésicules de l'intérieur. Les vésicules formées à l'intérieur des Infusoires sont dépourvues de membrane propre et peuvent se contracter jusqu'à disparaître, ou bien peuvent se souder et se fondre plusieurs ensemble. Les unes se produisent au fond d'une sorte de bouche et sont destinées à contenir l'eau engloutie avec les aliments; elles parcourent ensuite un certain trajet à l'intérieur et se contractent en ne laissant au milieu de la substance charnue que les particules non digérées, ou bien elles évacuent leur contenu à l'extérieur par une ouverture fortuite qui peut se reproduire plusieurs fois, quoique non identique, vers le même point, ce qui pourrait faire croire à la présence d'un anus.

Les vésicules contenant les aliments sont indépendantes et ne communiquent point avec un intestin ni entre elles, sauf le cas où deux vésicules viennent à se souder.

Les autres vésicules ne contenant que de l'eau, se forment plus près de la surface, et paraissent devoir recevoir et expulser leur contenu à travers les mailles du tégument. On peut, d'après
Spallanzani, les considérer comme des organes respiratoires ou du moins comme destinées à multiplier les points de contact de la substance intérieure avec le liquide environnant.

Les organes extérieurs du mouvement sont des filaments flagelliformes, ou des cils vibratiles, ou des cirres plus ou moins volumineux, ou des prolongements charnus; lesquels, à cela près qu'ils sont plus ou moins consistans, paraissent tous formés de la même substance vivante et sont contractiles par eux-mêmes dans toute leur étendue. Aucun n'est de nature épidermique ou cornée, ni sécrété par un bulbe.

Sauf quelques coques ou capsules siliceuses ou cornées et le pédicule des Vorticellés, et le faisceau de baguettes cornées qui arment la bouche de certaines espèces, toutes les parties des Infusoires se décomposent presque subitement dans l'eau après la mort.

Les œufs des Infusoires, leurs organes génitaux, leurs organes des sens ainsi que leurs nerfs et leurs vaisseaux ne peuvent être exactement déterminés, et tout porte à penser que ces animalcules, bien que doués d'un degré d'organisation en rapport avec leur manière de vivre, ne peuvent avoir les mêmes systèmes d'organes que les animaux supérieurs.

**EXPLICATION DES FIGURES ET OBSERVATIONS PARTICULIÈRES.**

**PLANCHES 14 ET 15.**

J'ai voulu dessiner moi-même sur le cuivre, d'après mes observations, les Figures d'infusoires compris dans les deux planches ci-joignées, afin que ma pensée pût être mieux comprise relativement à la nature de la substance charnue, des globules intérieurs et des vésicules, contractiles des infusoires, ainsi qu'à la coloration artificielle et à la décomposition spontanée de ces animaux; j'espère que la sincérité de mes dessins fera excuser ce qui manque, sous le rapport de l'art, à ces gravures d'essai, et qu'on voudra bien y voir seulement ce que j'ai voulu y mettre, une copie fidèle de ce que m'a montré le microscope. J'ai choisi des espèces très communes, celles que j'ai étudiées plus de cent fois et dessinées plus de vingt fois à différentes époques; leur image est donc bien fixée dans mon souvenir, et je crois bien m'être suffisamment accoutumé à exprimer dans mes dessins les particularités de leur structure.

Dans les Plœsceia (fig. A et E), j'ai représenté comment la prétendue cuirasse et les cils se décomposent à l'instant de la mort en se ramollissant et en se fondant dans la masse du corps; dans ces espèces aussi j'ai montré comment les vésicules intérieures augmentent en nombre et en volume à mesure que l'infusoire est plus près de mourir ou de diffuser complètement, et comment ces vésicules, véritables vacuoles occupées par de l'eau, peuvent se réunir et se souder à la manière des gouttes d'huile flottant sur l'eau.
Les *Plasconia*, nommées ainsi par M. Bory de Saint-Vincent, ont reçu de M. Ehrenberg les dénominations successives d' *Euplotes* et d' *Euplotes*.

La figure A est relative à la *Plasconia patella* (*Kerona patella* Muller) ; en A 1 est l'animalcule à l'état normal ; on remarque plusieurs soies bifurquées ; en A 2 la même *Plasconia*, tenuée captive entre des lames de verre, commence à se creuser de larges vacuoles contractiles, la prétendue cuirasse et les cils se fondent dans la masse qui s'arrondit et se prolonge en une expansion sarcodique ; la figure A 3 montre le même infusoire encore plus altéré, quoique vivant encore : les vacuoles se sont augmentées et fondues les unes avec les autres.

La figure B représente le *Plasconia charon* (*Trichofa charon* Muller). L'infusoire à l'état normal, en B 1, est successivement plus altéré dans les figures B 2, B 3, qui montrent le résultat produit par des émanations ammoniacales ; on y voit le corps de plus en plus arrondi, la cuirasse fonduë dans la masse, et les vacuoles plus grandes et confluentes.

Dans les *Kerone pustulata* (fig. C, D), j'ai rencontré diverses circonstances de la décomposition spontanée de l'animalcule, de l'excrétion des substances avalées ; j'ai donné des exemples d'une division accidentelle qui d'un infusoire a fait trois morceaux susceptibles de vivre isolément ; ce qui prouve à-la-fois l'absence totale des téguments et d'organes intérieurs dont on aurait dû voir des indices à l'endroit où la substance charnue est étirée et près de se rompre.

Dans les figures C 1, C 2, la *Kerone pustulata* est vue à l'état normal ; on y distingue des vacuoles, un corps ovale assez volumineux pris pour le testicule, et de nombreux granules réfractant fortement la lumière, et qui paraissent avoir été avalés par l'animal. Dans la figure C 3, l'infusoire est représenté comprimé entre deux lames de verre, les vacuoles paraissent plus claires en raison du rapprochement du microscope, un corps ovale plus foncé se voit près des vacuoles ; divers autres corps étrangers sont disséminés dans l'intérieur, et un amas de ces corps est exécré par une ouverture qui se forme sur le côté, et qui bientôt va se refermer de telle sorte, que l'infusoire reprendra sa forme primitive si l'on ajoute de l'eau.

En C 4 est une portion de *Kerone pustulata* continuant à vivre. En D 1, une *Kerone*, placée avec une goutte d'infusion entre deux lames de verre a été accidentellement divisée en trois lobes par une fibre de chanvre enlevée en même temps de la surface de l'infusion. Les lobes, vivants, agités fortement par le mouvement des cils, tiennent encore entre eux un cordon de la substance charnue glutinose de l'infusoire ; au bout d'un heure un des cordons s'est rompu de lui-même dans la figure D 2, de sorte que le lobe b est devenu libre en E, et parait être un nouvel animal de forme globuleuse ; l'autre cordon s'est étiré davantage et le lobe c est près de se séparer ; les vacuoles sont plus claires à cause de la distance moindre de l'objet au microscope.

En D 3 une autre *Kerone* de la même espèce est représentée telle qu'elle a été découpée accidentellement par la pression entre des filaments de conserver ; le lobe central présente une large vacuole correspondant à la cuirasse. Le tout a continué de se mouvoir autour de son centre pendant plusieurs heures.

La Paramécie (*Paramecium aurelia* fig. E) fait voir comment le carmin, dans les expériences de coloration artificielle, pénètre dans les vacuoles ou vésicules stomacales, qui se forment successivement au fond de la cavité buccale creusée par l'effet de l'impulsion que communiquent les cils au liquide extérieur. Les vacuoles ou vésicules stomacales une fois séparées du fond de cette cavité par le rapprochement des parois, n'ont plus aucune connexion entre elles ni avec la buuche, elles se meuvent à l'intérieur par suite du refoulement de la substance charnue homogène dans laquelle elles se sont creusées. La même espèce de Paramécie (fig. E 3, 4) (mais non le même individu) tenuée captive entre des lames de verre, a montré les vésicules en étoile de Spallanzani a, lesquelles un peu plus tard (fig. E 4) sont devenues de grandes vacuoles irrégulières avec des traces de plus rayonnant du centre à la circonférence.
Dans ces infusoires ainsi captifs, élargis par la compression, et ne trouvant plus dans le liquide amiant les éléments nécessaires à la respiration ou à l'entretien de la vie, ou voit les vacuoles ou vésicules intérieures devenir plus nombreuses et plus grandes, et en même temps la matière glutineuse intérieure exsude ou se répand au dehors en larges disques sur plusieurs points du contour. On ne peut admettre que ces exsudations de sarcode soient enveloppées d'une membrane extensible ; car on ne voit aucun cil à la surface, ce qui devrait cependant avoir lieu si un tégument général les recouvrait ainsi que le corps, et d'autre part le mouvement des cils sur le reste du corps détermine dans ses exsudations une agitation ou même un mouvement circulaire, indiqué par la flèche en e, comme si elles n'étaient qu'une simple gelée. J'ai vu plusieurs fois des vacuoles se former spontanément dans ces exsudations comme dans la figure (F, 4) ; mais n'ayant point sous les yeux le dessin que j'en ai dû faire, je n'ai pas voulu représenter de souvenir seulement cette particularité.

En b et en d dans ces mêmes Paramécies on voit des corps réfractant la lumière d'une autre manière que les vacuoles ou vésicules ; tandis que celles-ci agissent à la manière des lentilles concaves ; les corps b et d jouent au contraire le rôle de lentilles convexes.

Le corps d est ce que M. Ehrenberg nomme le testicule ; quant à moi, je ne sais quelle est sa signification. Les corps b, par leur position, paraissent être des corps étrangers avalés par la Paramécie, et entrainés près des bords ou des extrémités par le refoulement de la substance intérieure. J'ai vu distinctement, dans une infusion de farine, des grains de fécule avalés par des infusoires et logés de cette manière dans leur corps.

On voit souvent sur les expansions sarcoïdiques des infusoires mourans des particules solides agitées du mouvement Brownien plus vivement que dans le reste du liquide ; je n'ai pu me rendre compte de cette particularité.

Les figures F et G représentent des Kolpodes de Muller, et prudemment l'espèce que cet observateur a nommé K. cucullus. Leur forme les avait fait nommer des cornemuses par Joblot ; mais suivant M. Ehrenberg on doit nommer Kolpodes les espèces citées seulement à la partie antérieure. Ainsi la figure F d'après ce naturaliste, serait la Paramécie Kolpode ; quaut aux infusoires représentés par les figures G, comme ils ont la bouche munie d'une valve ou lame vibratile, ce sont des Glaucoma de M. Ehrenberg. Les fig. G1, G2, G3, malgré leurs differences, appartient à une espèce glaucoma scintillans Ehrenberg. La figure G1 représente une espèce nouvelle G. vividis, caractérisée par sa couleur verte et par la position de la bouche occupant le tiers ou le quart de la longueur totale au-dessus du centre.

Le Kolpode des figures F 1, F 2, est vu dans l'état normal ; la différence de teinte plus claire ou plus foncée des vacuoles provient uniquement de la distance plus ou moins grande laissée entre l'objet et les lentilles du microscope. Les vacuoles ou vésicules étant occupées par l'eau qui réfracte la lumière moins que ne le fait la substance charnue de l'infusoire, joue le rôle de lentilles concaves, c'est-à-dire qu'elles rendent divergents les rayons parallèles qui les traversent, et leur donnent un foyer virtuel situé du côté de la lumière incidente. Par conséquent, la figure F 1 correspond à un éloignement un peu plus grand, et la F a à un éloignement un peu moins de l'objet. On remarque dans la figure F 1 un anneau plus lumineux autour des vacuoles plus sombres ; cet effet de réfraction a été pris par Gleichen pour l'indice de l'existence d'une enveloppe mucilagineuse, analogue à celle des œufs de grenouille, et c'est là seulement ce qui lui a fait dire que les vésicules intérieures sont les œufs des infusoires.

La figure F 3 montre dans l'infusoire modifié par un long séjour entre les lames de verre, le centre occupé par une masse granuleuse, ou par un disque de substance charnue, de sorte qu'il reste autour un anneau occupé seulement par de l'eau, comme les figures b, b', le montrent avec un grossissement plus considérable ; b étant l'apparence offerte quand on diminue la distance
F. Dujardin. — Sur les Infusoria.

Le Kolpode F 3 montre en b ce qu'on a nommé le testicule.

La figure F 4 montre le même Kolpode près de mourir et entourée des exsudations de la substance glutineuse interne ou du sarcode ; une des expansions sarcodiques a s'est creusée spontanément de vacuoles tout-à-fait semblables à celles de l'intérieur. La figure F 5 est encore le même Kolpode dont la diffusée a été activée par l'approche d'un flacon d'ammoniaque ; un courant accidentellement produit dans le liquide tend à entrainer l'infusoire presque mort, et les expansions sarcodiques adhérentes aux verre sont étirées de manière à mieux montrer encore leur nature. Des globules réfractant fortement la lumière se voient en grands nombres ; ils avaient déterminé la formation de vacuoles autour d'eux, et paraissent être des corps avalés par l'animal durant sa vie.

Les Glaucoma G 2, G 3, montrent dans leurs vacuoles ou vésicules des noyaux granuleux comme le Kolpode F 3. Leur forme, analogue à celle des vrais Kolpodes, paraît aussi dériver de celle des Paramécies, dans lesquelles la bouche est surmontée par une saillie volumineuse dont les cils servent à exciter les tourbillons dans le liquide, et à amener les aliments à la bouche.

La figure G1 est celle d'un Glaucome coloré artificiellement par du carmin depuis plus de douze heures ; la couleur n'occupe plus des vésicules distinctes, elle est interposée dans la substance charnue de l'intérieur, où elle a été amenée par le mouvement de translation des vésicules qui la contenaient. Dans ce même infusoire, qui commence à souffrir de son séjour prolongé dans la même eau, on voit deux grandes vacuoles occupées par l'eau seulement.

La figure G 4 est la nouvelle espèce de Glaucome ; les vacuoles remplies d'eau qu'elle présente sont disposées sur le contour, comme le carmin dans la figure précédente.

Nota. Toutes ces figures sont grossies 300 fois environ.

---

LETTRE sur les Crustacés colorés en rouge qu'on rencontre dans les marais salans, adressée à l'Académie des Sciences le 5 novembre 1838,

Par M. Payen.

Lorsqu'à mon retour d'un voyage en Italie, jeus l'honneur de vous adresser quelques observations sur les colorations rouges naturelles des marbes et des marais salans, je ne demandai point de rapport.

Mais aujourd'hui, la discussion ouverte par le savant M. Du- mas ayant répandu plus d'intérêt sur ces phénomènes, je ne dois plus craindre d'abuser des momens de l'Académie en lui soumettant, à l'appui de mes observations premières, des faits nouveaux qui leur donnent d'ailleurs de curieux développe-
Me trouvant en 1836 à Serravezza, je fus consulté par M. Henraut, propriétaire des belles carrières ouvertes par Michel-Ange, sur la cause de certaines taches rouges du marbre blanc, attribuées au fer peroxidé.

Je cru reconnaître sous le microscope qu'elles étaient dues à un végétal globuliforme dont, à mon retour en France, je soumis la détermination à M. Turpin. (i)

Lorsque je passai à Marseille, je me rendis, suivant le conseil que m'en avait donné M. Dumas, à la saline de Marignane, dans la vue d'examiner la coloration de ses marais salans.

L'obligeance de MM. Julien et Frémerat me permit de recueillir et de rapporter vivans à Paris des petits Crustacés, dans lesquels une couleur rouge me parut coïncider avec les phénomènes en question.

M. Audouin détermina l'espèce de ces petits Crustacés et leurs affinités avec les habitants des solutions salines de plusieurs contrées.

M. Turpin ayant découvert dans les Artemia que je lui avais données des végétaux rudimentaires semblables à ceux qui rougissent les marbres en Italie, la transparence des membranes des petits Crustacés semblait permettre d'attribuer leur couleur rouge au Protococcus kermesinus ingéré, et, par suite, la coloration des marais salans aux Artemia salina, qui sont amenées en une sorte d'écume rouge à la surface des eaux salées, lorsque la densité maximale de celles-ci les contraint à surnager.

Mes essais sur la coloration en rouge, en blanc, en bleu et en noir du canal intestinal de l'Artemia salina, étaient en parfaite harmonie avec le fait indiqué par M. Turpin.

M. Audouin avait d'ailleurs observé sur les individus vivans à Paris les mêmes phénomènes dont j'avais été témoin.

Il avait en outre reconnu, en changeant le liquide et variant la densité par des solutions d'eau claire et de sel commun, que les Artemies, d'abord rouges, se décoloraient du jour au lendemain, puis reprenaient au bout de quarante-huit heures leur coloration.

(i) J'ai prouvé depuis que les taches rouges des marbres de Versailles sont dues à une autre cause.
Les alternatives furent reproduites plusieurs fois pendant quinze jours, alors même que l'examen le plus attentif ne put faire découvrir aucune trace de substance colorée dans les solutions où les petits Crustacés nageaient.

Ces faits ne permettaient guère d'admettre la cause exclusive attribuée par M. Dunal à la coloration des eaux salées.

Aussi, pendant son dernier voyage, M. Audouin s'empressa-t-il de profiter de l'occasion qui lui était offerte pour examiner attentivement le phénomène sur les points mêmes où M. Dunal l'avait observé.

Accompagné de ce savant, M. Audouin se rendit aux marais salans de Villeneuve : là, il fut constaté par M. Dunal lui-même que les eaux des rigoles qui entouraient et alimentaient certains bassins ne contenaient pas de *protococcus* discernables. Cependant M. Audouin y trouva des Crustacés qui présentaient colorés en rouge; leur canal intestinal surtout offrait cette coloration avec une grande intensité : il n'y eut pas alors le moindre doute émis sur ce fait, et M. Dunal, qui ne l'avait point encore observé, en demeura fort surpris.

On en chercha l'explication. M. Audouin pensa que dans ces eaux le *Protococcus* pouvait exister incolore, et le développement de la coloration avoir lieu après l'ingestion dans le canal intestinal du Crustacé ; qu'ainsi l'apparition de la couleur rouge, en supposant qu'elle fût due aux *Protococcus* dans les eaux très denses, pouvait cependant être développée à la faveur du petit Crustacé antérieurement à l'époque où cette densité maxime de l'eau arrive.

Il me semble d'ailleurs qu'en suivant par leur extrême mobilité les mouvements progressifs des eaux depuis les réservoirs jusques aux tables à saunier, les *Artemies* doivent servir de véhicules à la matière colorante et aux petits Cryptogames globuleux qu'ils ont avalé, et qui, sans cette circonstance, déposés dans les premiers bassins, ne se renouveleraient peut-être pas en aussi grand nombre dans les tables à chaque opération.

Les premières recherches de M. Dunal à ce sujet, ainsi que les développements présentés par M. Auguste de Saint-Hilaire, peuvent très bien se concilier avec cette manière de voir.
En résumé, il me paraît bien constant, ainsi que je l'avais annoncé d'abord, que ces petits Crustacés colorés en rouge sont amenés à la superficie des eaux et contribuent au phénomène de la coloration des marais salans de la Méditerranée : ces Crustacés, d'après la détermination qu'en a donnée M. Audouin, sont des Artemia salina.

Le petit Cryptogame dans lequel réside une des causes que j'avais signalées de la coloration des marbres, a été découvert par M. Turpin dans le canal digestif des Artemia que j'avais rapportées.

Ce Protococcus kermesinus fut observé par M. Dunal dans des eaux où je n'avais point eu l'occasion de le voir.

M. Audouin a constaté, en présence de M. Dunal, que des Artemia salina colorés en rouge nagent dans des eaux des salines où l'on ne peut observer le Protococcus kermesinus.

Le Protococcus kermesinus ainsi que l'Artemia salina, sont incolores dans les parties intégrantes de leurs tissus propres, et doivent l'un comme l'autre leur coloration rouge à une matière étrangère.

Enfin il reste à démontrer si, dans certaines circonstances et dans quelques localités, le phénomène périodique de la coloration superficielle des eaux prêtes à sauner peut avoir lieu sans la coopération des petits Crustacés.

M. Dumas avait appelé mon attention sur ce phénomène, parce qu'alors on en ignorait entièrement l'origine, bien que la présence de petits Crustacés rouges eût été signalée dans les eaux naturelles, salées ou alcalines de diverses contrées.

Quelle que soit, en définitive, la part d'action de l'Artemia salina et du Protococcus kermesinus sur la sécrétion et le transport de la matière colorée rouge, j'aurai peut-être contribué à résoudre le problème, et je ne pouvais prendre pour cela une voie plus sûre qu'en apportant aux personnes les plus compétentes les objets mêmes que j'avais observés, recueillis et conservés avec soin.
Sur un organe énigmatique propre à quelques Bivalves,

Par M. Ch. Th. De Siebold à Danzig. (1)

Il existe au bout antérieur du pied de quelques Bivalves un
ganglion notable, décrit par Mangili sous le nom de ganglion
central, et on aperçoit dans le voisinage de ce ganglion un
organe singulier, double, qui paraît avoir échappé jusqu'au ce
moment aux recherches des anatomistes. M. Siebold l'a
trouvé la première fois chez le Cyclas cornea. En comprimant le pied
de ce mollusque entre deux lames de verre, on voit aux deux
côtés du ganglion central un petit réervoir rond, composé
de d'une masse élastique, opaque, et tenace, contenant au milieu
un noyau parfaitement transparent, d'une forme ronde
aplatie. Ce noyau flotte tout-à-fait librement au milieu de ce
réervoir, ou plutôt il s'y balance continuellement par un
mouvement oscillatoire sans toucher la paroi interne de cette
cavité. L'auteur croit que ces noyaux sont encore entourés
d'un fluide.

La blessure du réervoir en détermine la contraction, et
empêche de cette manière les mouvements du noyau. La trans-
parence de ce noyau n'est pas troublée par l'alcool; l'acide
nitrique affaibli le dissout sans développement des bulles d'air.
Pressé entre deux lames, il se forme des déchirures qui se
dirigent du centre vers la périphérie, et on entend une dé-
crépitation. Il se sépare enfin en pyramides plus ou moins
obtenues, dont la pointe se trouve au centre du noyau. Notre
auteur conclut de ces observations que ce noyau est composé
d'un sel (peut-être calcaire), dont la cristallisation se ma-
ifesterait aussi de la manière suivante. On observe au centre
du noyau un petit trait, traversé par un second sous une di-
rection verticale; si le noyau se trouve posé sur le champ, on
aperçoit un troisième trait au centre.

Cet organe se trouve même dans les embryons de la longueur
d'une ligne à 1/6 de ligne. Le diamètre du réervoir est de

(1) Extrait des Archives d'Anatomie, Physiologie, etc., par Muller, Berlin, 1838, cahier 1.
Communique par M. Mandl
0,04 de ligne anglaise (1,08 de millimètre), et celui du noyau de 0,02 de ligne anglaise (0,54 de millimètre), chez les individus de 5 lignes rhénales de longueur. Le diamètre des réservoirs des individus d’une ligne rhénale de longueur n’est que de de 0,02 de ligne anglaise, et celui des noyaux de 0,007 à 0,009 de ligne anglaise.

M. Siebold a trouvé le même organe chez le Cyclas rivicola et C. lacustris. Il est plus difficile à trouver chez l’Anodonta anatina, l’Unio pictorum et l’U. tumida. En observant les réservoirs de ces derniers Bivalves avec le microscope, on y voit le noyau qui offre l’apparence d’une boule de verre qui tournerait sur son axe. Séparés de leurs réservoirs les noyaux restent immobiles dans l’eau. Les caractères chimiques de ces corps sont les mêmes; ils sont de plus transparens au milieu, et on y voit quelquefois deux ou trois anneaux concentriques. Enfin pressés entre deux lames, ils se séparent en couches concentriques. Le diamètre du réservoir est chez une Anadonta anatina de 2 1/2 pouce rhén. de longueur, de 0,1 et celui du noyau de 0,04 de ligne anglaise.

Le Mya arenaria, le Cardium edule et le Tellina fragilis, sont pourvus des mêmes organes, et chez le Mya et le Cardium on croit apercevoir une corde nerveuse, qui établit la communication entre le ganglion et cet organe.

Ni le Mytilus Wolgae, ni le M. edulis, ni l’embryon de l’Anadonta anatina ne possèdent cet organe. L’auteur n’a pu trouver de cils vibratoires ni à la surface du noyau, ni à la paroi interne du réservoir. Il discute ensuite en quelques mots la signification de cet organe, et se demande s’il pourrait remplacer les yeux? Si cette opinion trouve quelque appui dans la manière dont se meuvent les Cyclades, chez qui le bout des pieds se trouve toujours hors de la coquille, d’un autre côté on ne pourrait concevoir l’usage de pareils organes chez les Unio et les Anodontes, dont les pieds se trouvent toujours dans la fange. Il ne paraît pas non plus que cet organe soit en rapport avec les fonctions génitales, parce qu’on le trouve même chez les embryons. M. Siebold se propose de continuer ses recherches à ce sujet.
Observations sur la nature et le mode de croissance des Polypiers.

Par M. H. Milne Edwards.

§ 1. Parmi les faits curieux que nous offrent, en si grand nombre, l'histoire des Polypes, il en est un surtout qui doit exciter au plus haut degré notre intérêt, car il se rattache à une des propriétés les plus singulières de ces animaux si bizarres, et se lie d'une manière intime à de grands phénomènes géologiques qu'on est étonné de voir résulter de forces si minimes. Je veux parler de la formation de ces corps solides ou Polypiers, dont la dureté et le volume contrastent quelquefois si vivement avec la délicatesse extrême et la petite presque microscopique des êtres qui les produisent. On connaît le rôle important que ces Zoophytes ont joué dans la formation d'un nombre considérable d'immenses roches, dont les puissantes assises, composées en grande partie de débris de Polypiers, recouvrent des contrées entières, et dont la date remonte aux époques les plus reculées de l'histoire physique du globe ; on sait aussi que de nos jours, de même qu'autrefois, les dépouilles solides des Polypes, amoncelées au fond des eaux, comme dans un vaste charnier, suffisent à produire des récifs et des îles. Mais si l'on cherche à s'expliquer comment ces frêles architectes exécutent de pareils travaux, on se trouve bientôt arrêté, car on ne sait presque rien sur la nature intime des Polypiers et sur leur mode de formation.

Suivant Lamarck, ces Polypiers sont des corps qui n'offrent aucune trace d'organisation, qui ne vivent pas et qui ne font...
nullement partie des animaux qu'ils contiennent (1); pour rendre sa pensée d'une manière encore plus claire, il ajoute que ces Polypiers sont toujours extérieurs aux êtres qui les habitent, et il les compare au guêpier qui sert de demeure aux guêpes (2); enfin il explique la formation de ces habitations par une transsudation de matières gelatinouses et terreuses qui se ferait à la surface du corps des Polypes, et qui se moulerait sur cette surface, comme la coquille d'un mollusque se moule sur le manteau de cet animal, ou plutôt comme le tube calciaire d'une serpule se forme autour de l'Annelide qui le secrète.

Cuvier, dans ses premiers écrits, avait professé sur ce sujet une opinion différente : « La partie dure ou la croûte qui revêt les Polypes, disait-il, paraît faire partie de leur corps et croître avec eux par intus-susception (3); » mais par la suite il se rangea évidemment de l'avis de son savant collègue, car, dans les deux éditions de son règne animal, il dit expressément que les Polypiers sont toujours formés par dépôt et par couches comme l'ivoire des dents. (4)

Lamouroux, dont les travaux sur l'actinologie sont cités à chaque instant par tous ceux qui s'occupent de cette branche de la science, dit aussi que les Polypiers se forment par dépôt à la surface extérieure de l'animal, et il va même plus loin, que Lamarck, car il assure que, dans le jeune âge du Polype, il existe une membrane tégumentaire destinée à la sécrétion de la matière dont cette croûte se compose, et qu'aussitôt la croissance de l'animal terminée, cette membrane se flétrit et disparaît, en sorte que le corps de l'animal ne reste plus en connexion avec sa loge inorganique, que par le pourtour de l'orifice de cette cellule.

Enfin, M. de Blainville, tout en adoptant les idées de Lamarck

(3) Tableau élémentaire, page 663.
sur la nature intime et le mode de formation de la plupart des Polypiers (1), paraît être arrivé dans certains cas à des résultats différents, car, en parlant des Zoanthaires, il dit que c'est souvent dans l'épaisseur de l'enveloppe ou même dans les mailles du corps de l'animal, que se dépose la substance dont le Polypier est formé, (2), mais, il n'entre dans aucun détail à ce sujet, et n'expose pas les raisons qui l'ont déterminé dans le choix de son opinion.

D'après le court exposé historique que je viens de présenter, on voit que les zoologistes s'accordent presque tous à considérer les Polypiers, tant cornés que calcaires, comme étant des espèces de croutes extérieures, privés de tout mouvement vital, le résultat d'une simple excrétion cutanée, et l'image exacte de ces tubes solides que certaines Annelides se construisent dans le sol ou à la surface des corps sous-marins.

Il me paraît cependant évident que cette opinion est erronée, et, par l'examen attentif du mode de croissance d'un grand nombre de Polypiers, ainsi que par l'étude anatomique de leur structure intérieure, je me vois conduit à penser que ces enveloppes solides, considérées dans leur ensemble, sont toujours des parties vivantes qui appartiennent au corps du Polype tout autant que ses tentacules ou sa cavité digestive, qui se nourrissent comme le reste de l'animal, quelle que soit leur dureté pierreuse, et qui ne peuvent être mieux comparées qu'à un squelette extérieur.

§ 2. Le premier fait qui m'a porté à soupçonner la vitalité dans ces Polypiers, réputés inorganiques, m'a été fourni par une belle espèce de Sertulaire que j'ai trouvée sur les côtes de la Provence, et que je crois être nouvelle (3). Les Sertulaires, comme on le sait, sont pourvues d'une gaine solide dont la consistance est assez analogue à celle de la corne, et dont l'aspect

---

(1) Voyez l'article Polypier du Dictionnaire des Sciences naturelles, t. 42, p. 372.
(2) Manuel d'actinologie, page 310.
(3) La Sertulaire bordée, Nob.
rappelle tout-à-fait celui d'une plante grêle et rameuse; cette gaîne constitue le Polypier, et dans son intérieur se trouve une substance molle et parenchymateuse qui forme aussi un tube, et qui, dans toute sa longueur, est creusée d'une sorte de cavité stomacale tubulaire, commune à tous les individus d'une même agrégation. Dans la Sertulaire dont il est ici question, l'espèce de tige, formée par la gaîne tégumentaire de la série principale de ces Polypes agrégés, varie beaucoup en grosseur, et ces variations coïncident avec des différences d'âge; dans les jeunes pieds, et dans toute la partie nouvellement formée des tiges dont le développement est même très avancé, le diamètre du Polypier est très petit, tandis que vers la partie inférieure de ces mêmes tiges, déjà vieillies, sa grosseur est beaucoup plus considérable et dépasse souvent du double ce qu'elle était dans le principe. Au premier abord on pourrait penser que cet accroissement en diamètre dépendrait de l'addition de couches nouvelles à la surface externe du tube tégumentaire primitif; mais si l'on fait une section transversale de la tige là où elle présente les dimensions les plus différentes, et qu'on en examine la coupe au microscope, on verra que les parois du Polypier ont conservé, en grandissant, la même épaisseur, et que, par les progrès de l'âge, la cavité intérieure, remplie par le parenchyme mou des Polypes, s'est élargie au point de pouvoir loger à l'aïse un corps d'un diamètre du jeune tube tégumentaire tout entier. Or, un changement pareil ne peut dépendre que d'une véritable croissance, et ne peut s'expliquer que par l'effet d'un mouvement nutritif moléculaire, mouvement qui suppose dans les parties qui en sont le siège, l'organisation et la vie.

§ 3. Dans d'autres Polypes de la même famille, on remarque aussi des phénomènes qui indiquent clairement la vitalité de l'enveloppe tégumentaire, lors même que cette gaîne sonde a déjà acquis toute l'épaisseur et toute la consistance qu'elle doit avoir. Ainsi, dans les Antennulaires, dans plusieurs espèces de Plumulaires, et dans quelques Sertulaires, le tube semi-corné de la tige de ces touffes d'aspect phytoidé, cesse bientôt de se dilater; mais à une certaine époque sa surface externe
produit des excroissances filiformes qui s'avancent en rampant tantôt vers la cime du Polypier, tantôt vers sa base. Ces filaments cornés et tubuleux comme la gaine dont ils proviennent, s'y soudent dans tous leurs points de contact, et souvent donnent à leur tour naissance à des branches semblables à eux-mêmes, de sorte que par les progrès de l'âge, la tige qui d'abord était simple et grêle, grossit considérablement et se trouve composée d'une multitude de tubes réunis en faisceau. Enfin la croissance de ces parties dures ne s'arrête pas encore, et dans les portions de la touffe qui sont parvenues à ce que l'on peut considérer comme la vieillesse de ces êtres singuliers; il naît de la surface externe du Polypier une multitude d'autres filaments semi-cornés qui se ramifient tout à l'entour, comme le chevelu des racines chez les plantes, et qui servent à fixer celui-ci plus solidement aux corps voisins. Cette espèce de végétation m'eût paru impossible si le Polypier qui en est le siège était réellement un corps inorganique, et elle fournit, ce semble, une preuve évidente de l'existence de la vie dans l'enveloppe tégumentaire de ces animaux agrégés.

§ 4. Si l'on conservait encore quelque doute à cet égard, il suffirait, pour la dissiper, d'observer la manière dont une Sertulaire se multiplie par bourgeons. Il arrive souvent de trouver ces Polypes solitaires dans le jeune âge, et alors leur tube extérieur ou Polypier ne présente ni orifice latéral, ni ramifications; mais à une certaine période de son existence, l'animal produit dans l'intérieur de sa tige des bourgeons reproducteurs, et la manière dont ces nouveaux jets se développent répand beaucoup de lumière sur la nature intime du Polypier. En effet, si la gaine solide de la Sertulaire était, comme le veut Lamarck, une sorte de croûte inerte et sans connexions organiques avec la partie intérieure et vivante de l'animal, le bourgeon qui prend naissance dans son intérieur ne pourrait se développer avant que d'avoir détruit, par résorption ou autrement, la paroi du Polypier contre laquelle il viendrait se heurter, et après s'ètre frayé ainsi un chemin au dehors, il devrait s'avancer plus ou moins loin avant que de se revêtir de la gaine solide, résultat
de la concrétion des matières exsudées à sa surface; le nouveau tube tégumentaire, ainsi formé, devrait être toujours précédé dans son apparition par le tissu parenchymateux intérieur, chargé de le sécréter, et son extrémité serait ouverte dès le principe; enfin les diverses parties de la jeune branche du Polypier, une fois produites, ne devraient plus changer de forme si ce n'est par suite de l'allongement de leurs bords ou du dépôt de nouvelles couches à leur intérieur. Mais les choses ne se passent pas ainsi. Lorsqu'une nouvelle branche commence à pousser, on voit d'abord le Polypier lui-même éprouver des modifications qu'on ne peut expliquer qu'en supposant son tissu animé d'un mouvement nutritif analogue à celui qui existe dans un os dont la forme vient à changer par suite du développement d'un exostose à sa surface. Le tube semi-corné, ou plutôt cartilagineux du Polype adulte, présenté dans un point déterminé une sorte d'excroissance latérale dont la cavité communique avec l'intérieur du tube générateur, et loge un prolongement de la substance parenchymateuse renfermée dans ce dernier. Ce tubercule grandit rapidement et constitue bientôt un long tube de consistance cornée, semblable en tout à la tige qui le porte, mais terminé en cul-de-sac à son extrémité libre; cette extrémité se renfle ensuite en une sorte d'ampoule dans l'intérieur de laquelle on voit se développer peu-à-peu la portion terminale et mobile du jeune Polype; ses dimensions augmentent beaucoup sans que l'épaisseur de ses parois change notablement; enfin son sommet qui adhère aux parties molles intérieures s'infléchit en dedans, s'aniiment et finit par disparaître de façon à ouvrir la cavité fermée jusqu'alors, et à permettre à l'animal de déployer au dehors son appareil tentaculaire (1). On voit, par conséquent, que le Polypier des Sertulaires croît réellement, et pour se développer de la sorte il faut nécessairement admettre qu'il est organisé et doué de la vie; ce ne peut donc être une simple croûte moulée sur la surface du corps

(1) J'ai eu l'occasion de constater des faits de ce genre chez un grand nombre de Sertulaires, et un observateur très habile, M. Lister, en a également été témoin, mais sans en tirer, relativement à la nature du Polypier, les conséquences qui en découlent. (Voyez Some observations on the structure and functions of Polypi. Philos. trans. 1834.)
de l'animal, et il faut le considérer comme une tunique tégumentaire dont la substance se rapproche par sa densité du tissu qui, chez les animaux supérieurs, forme les cartilages permanents ou les os dans le premier degré de leur développement.

§ 5. Du reste, la partie tégumentaire des Polypes ne présente pas toujours cette rigidité singulière, et, dans certaines familles, elle est tour à tour complètement membraneuse, de consistance cartilagineuse ou d'une dureté osseuse, sans que sa conformation soit d'ailleurs modifiée et sans qu'il soit possible de méconnaître dans la gaine rigide des uns l'analogue de la tunique membraneuse des autres. Ainsi, chez les Polypes des genres *Vesicularia* et *Deeliac*, le corps de l'animal se compose d'un sac ovulaire de consistance membraneuse, dont l'extrémité antérieure, garnie d'un cercle de tentacules entourant la bouche, peut rentrer en elle-même comme un doigt de gant, et dont la cavité loge un tube digestif, recourbé en forme d'anse et terminé par deux orifices distincts; enfin ce sac est fixé avec ses congénères sur une sorte de tige rampante de même texture que ses parois. Personne ne songerait à révoquer en doute la nature organique de cette membrane tégumentaire, et les partisans de l'opinion de Lamarck se borneraient à dire que ces animaux n'ont pas de *polypier*. Or, dans les Sérialaires, toutes les parties de l'organisation sont conformes essentiellement de même que chez les Vésiculaires, seulement, la tige commune et les deux tiers inférieurs du sac tégumentaire de chacun des Polypes ont acquis plus de consistance et présentent la même texture que la gaine semi-cartilagineuse des Sertulariens. L'espèce de cellule, ainsi formée, se continue avec la portion membraneuse des téguments de l'animal, et ne présente ni à l'une ni à l'autre de ses faces une tunique molle, que l'on pourrait considérer comme étant le représentant de la membrane tégumentaire des Vésiculaires et comme servant à sécréter le polypier. On est donc naturellement conduit à admettre que cette cellule est une portion de la tunique tégumentaire elle-même, et à penser qu'elle doit être organisée, tout aussi bien que celle des Polypes mous dont nous venons de parler.
§ 6. Les Eschariens nous offrent des modifications analogues, et montrent quelquefois d'une manière encore plus évidente que c'est la membrane tégumentaire du Polype elle-même qui s'épaissit et se durcit pour constituer le polypier. Ainsi, tandis que la tunique extérieure, ou, pour me servir de l'expression généralement employée, la cellule est entièrement membraneuse (dans le genre Holodactyle, par exemple), tandis que d'autres fois elle conserve en partie seulement sa mollesse, et revêt, dans le reste de son étendue, un aspect corné, sans que l'on puisse attribuer cet endurcissement à la formation de quelque croûte déposée à sa surface, et sans qu'il y ait entre la partie dure et la partie molle discontinuité organique. Ainsi, dans la Flustre toile de mer, la gaine tégumentaire n'est cornée que sur le bord du repli labial qui représente l'opercule, dans les lignes de soudure des diverses cellules entre elles et à l'angle de celles-ci, là où s'élève un petit tubercule arrondi ; dans le reste de son étendue, cette enveloppe est membraneuse, et, lorsqu'on l'examine à l'état frais, il est facile de se convaincre qu'elle est formée par un tissu organisé. Dans les Cellulaires, les Eucratées, etc., l'endurcissement de cette tunique extérieure s'étend davantage, et il ne reste plus à l'état membraneux qu'une sorte de disque ovale, au milieu duquel se trouve l'ouverture operculifère, destinée à livrer passage à la portion protractile du Polype. Enfin, chez certaines Flustres, tels que la Flustre bombycine, toute la cellule tégumentaire offre la consistance semi-cornée, qui, dans les polypiers précédents, ne se montrait que partiellement.

§ 7. Jusqu'ici nous n'avons parlé que de polypiers plus ou moins cartilagineux, qui conservent une certaine flexibilité, et, tout en reconnaissant que ce ne sont pas de simples croûtes inorganiques, comme on le croyait généralement, on pourrait encore penser que la vitalité dont ils sont doués n'existe pas dans les masses plus ou moins lapidescentes dont se composent les polypiers pierreux, et supposer que ces derniers ne sont effectivement que des produits inorganiques, analogues aux tubés des Serpules ; mais, en les étudiant comme nous venons d'étudier les polypiers flexibles, on est conduit à adopter l'opinion contraire,
et à les considérer comme étant formés par un tissu vivant, dans la substance duquel se fait un dépôt moléculaire de matière calcaire, assez analogue à celui qui, chez les animaux supérieurs, transforme les cartilages en os.

§ 8. Cette sorte d'ossification commence même chez certaines Flustres; dont le polypier présente encore une apparence semi-cornée; car, si l'on plonge dans de l'acide hydrochlorique affaibli une des expansions frondescentes dont se compose la Flustre foliacée, on voit se manifester une légère effervescence, phénomène qui décelle l'existence de particules de carbonate calcaire dans l'épaisseur des parois du polypier; mais l'enveloppe tegumentaire des Echariens n'acquiert réellement une dureté pierreuse que chez les Eschares, les Rétépores, les Salicornaires, etc.; et c'est par conséquent chez ces Polypes que nous devons chercher si elle offre encore quelque indice d'organisation et de vitalité.

Les observations que j'ai déjà eu l'occasion de faire sur la structure des cellules tegumentaires des Echares et sur les changements de forme que ces loges crétacées subissent par les progrès de l'âge (1), me paraissent trancher la question; car les modifications que j'ai signalées, la conformation du Polypier de l'Eschare cervicorne et de plusieurs autres espèces du même genre, prouvent que, postérieurement à la complète ossification de la gaine tegumentaire, celle-ci continue à être le siège d'un travail nutritif et s'accroît encore lorsqu'elle parties molles du Polype ont déjà cessé de remplir leurs fonctions ordinaires.

Mais, si l'on voulait de nouvelles prouves de la nature organisée et de la vitalité de ces Polypiers pierreux, les Salicornaires nous en fourniraient. Par les progrès de l'âge, les cellules tegumentaires de ces petits Zoophytes subissent des changements analogues à ceux que présentent les Eschares; et, de plus, à une époque avancée de la vie, lorsque leurs parois ont déjà acquis toute leur épaisseur et toute la dureté lapidescente qu'elles doivent avoir, elles sont encore le siège d'une sorte de végétation; car elles

(1) Voyez Annales des Sciences naturelles, deuxième série, tome vi, page 36.
donnent naissance à des prolongements radiciformes, dont le tissu est une continuation du tissu dont elles se composent et dont la croissance est rapide.

§ 9. La conformation intérieure des Alcyons proprement dits ou Lobulaires me paraît donner aussi la clef du mode de formation du polypier pierreux des Astrées et des autres Zoanthaires. Le tissu tégumentaire de ces Polypes est de consistance charnue et recèle dans son intérieur un système compliqué de canaux rameifiés ; il paraît être aussi le siège primitif de l'espèce de bourgeonnement par lequel ces animaux augmentent le nombre des individus agrégés entre eux : aussi ne peut-il exister aucune incertitude sur sa nature organique et sur sa vitalité; mais on y reconnaît néanmoins un premier degré d'ossification ; car il se dépose dans la profondeur de sa substance une multitude de particules de carbonate de chaux qui, examinées au microscope, simulent en général des cristallisations confuses (1). Or, que l'on suppose pour un instant ce dépôt interne de carbonate calcaire un peu plus abondant, et l'on aura à la place du Polypier charnu un Polypier lapisdescent, comme celui d'un si grand nombre de Zoanthaires.

§ 10. Du reste, l'observation directe de la structure de ceux-ci fait voir qu'effectivement ce n'est pas à la surface du Polype, ainsi que le disait Lamarck, mais bien, comme l'a pensé M. de Blainville, dans l'épaisseur des tissus organisés de l'animal, que se déposent les molécules de carbonate calcaire destinées à la solidification du Polypier. Il est également facile de s'assurer que, lorsque le Polypier a acquis de la sorte sa dureté pierreuse, il continue pendant long-temps à grossir et par conséquent à vivre.

Si l'on examine à l'état frais un de ces gros Polypiers dendroïdes qui se rencontrent dans le voisinage des bancs de corail de la côte d'Alger, et qui atteignent souvent une hauteur de plusieurs pieds, Polypiers que Peyssonnel désignait sous le nom de Fenouil

(1) Veyce nos observations sur les Alcyons; Ann. des Sc. nat. 2e série, tome iv.
de mer, et que les zoologistes actuels appellent la Caryophyllie rameuse (Lam.) ou la Dendrophillie (Bl.), on voit que les Polypes sont loin d'être simplement implantés dans les loges stelliformes par lesquelles chaque branche se termine. Le tissu mou et coriace dont se compose la paroi extéme de la portion protractile du corps de ces animaux actiniformes, se continue sans interruption avec un tissu de même nature qui constitue en quelque sorte la gangue vivante, dans la profondeur de laquelle se déposent les particules pierreuses du Polypier. La présence de ce tissu de couleur jaunâtre est facile à constater même vers la partie inférieure de celui-ci, et il est également aisé de s'assurer que c'est dans son épaisseur ou dans les mailles de sa substance que se trouve l'espèce de charpente lapidescente dont ces singuliers animaux sont pourvus. Dans les jeunes individus, ainsi que dans la portion la plus nouvellement formée des individus d'un âge plus avancé, le tissu charnu est assez épais et cache complètement la partie calcaire du Polypier ; celle-ci est très mince et semble résulter de la soudure de particules pierreuses déposées dans la substance de la portion charnue, autour de filaments qui sont probablement des canaux analogues à ceux dont les téguemens coriaces des Alcyons sont pourvus en si grande abondance. Au premier abord, on pourrait croire que la lame solide ainsi formée est d'une structure compacte et homogène ; mais si on la fait bouillir dans une lessive alcaline de façon à détruire la matière animale qui entre dans sa composition, on la réduit à une masse lapidescente dont la surface est criblée d'une multitude de trous irréguliers, et dont la substance, examinée au microscope, offre une texture spongieuse. Par les progrès de l'âge, les espaces interstitiaries, occupées par les parties molles, diminuent progressivement ; mais ces dernières continuent à croître et en même temps à s'endurcir, de sorte que le cylindre que représente le Polypier grossit en même temps qu'il devient plus solide, jusqu'à ce qu'enfin, ne recevant plus de suc nutritif en quantité suffisante, il cesse peu-à-peu de vivre, sans cesser pour cela de conserver ses connexions avec les parties moins avancées en âge qui sont encore animées d'un mouvement nutritif plus ou moins rapide. Ce n'est pas tout, les cloisons
membraneuses qui garnissent en dedans les parois de la cavité abdominale du Polype s’ossifient comme les téguments, et, après avoir perdu leur mollesse primitive, continuent à grandir et se couvrent de végétations irrégulières, d’où résulte une masse d’aspect spongieux qui remplit peu-à-peu tout l’intérieur du Polypier, et qui cesse bientôt de ressembler, par sa forme, aux lamelles membraneuses dans leur état primitif. Enfin, les bourgeois reproducteurs qui sont destinés à former de nouvelles branches, ou plutôt de nouveaux individus, et qui se développent dans la partie tégumentaire du Polype, ne s’y montrent que lorsque la solidification de celle-ci est déjà assez complète pour que la dépouille de l’animal offre dans ce point tous les caractères d’un Polypier pierreux, et pour que la cavité abdominale du jeune individu soit séparée de celle de sa mère par cette barrière solide. Ainsi, non-seulement cette partie réputée inorganique est douée d’un mouvement nutritif et croit par les progrès de l’âge, mais elle est le siège d’un des phénomènes physiologiques les plus importants de la vie de ces singuliers Zoophytes, de leur multiplication par bourgeois.

§ 11. Les Astéries, dont j’ai pu observer un grand nombre à l’état vivant sur les roches qui avoisinent Alger, m’ont présenté un mode de structure analogue. Le polypier de ces Zoophytes n’est pas formé de couches inorganiques concrétées autour du corps de l’animal, mais d’un tissu organique, entre les mailles duquel se déposent des particules de carbonate calcaire, sans que ce dépôt arrête aussitôt le mouvement nutritif dans les parties molles qui en sont le siège; et c’est à cause de cette persistance de la vie dans le Polypier solide, que sa conformation se modifie avec l’âge, et que les parties voisines se soudent entre elles dès qu’elles viennent à se toucher.

§ 12. La plupart des autres Zoanthaires à Polypiers pierreux n’habitent pas nos mers, et par conséquent je n’ai pu en étudier la structure à l’état frais, et m’assurer si leur charpente solide se compose, comme celle des espèces dont il vient d’être question, d’un tissu organique et vivant solidifié à l’intérieur par du carbo-
naté de chaux déposé dans sa profondeur; mais l'examen attentif de la dépouille desséchée de ces animaux, telle qu'on la conserve dans nos Musées, m'a convaincu que, chez tous, le Polypier doit avoir ce mode de conformation et doit continuer pendant un certain temps à croître après que son tissu a acquis une dureté presque pierreuse. En effet, les différences que l'on observe lorsqu'on compare les portions encore jeunes du polypier des Ouclines, des Pocillopores, des Sarculines, des Disticopores, des Errhines et de plusieurs autres Zoanthaires exotiques, avec des portions du même polypier plus avancées en âge, me paraissent incompatibles avec les idées professées par Lamarck, et me semblent indiquer clairement que, chez ces animaux, de même que chez tous ceux dont nous venons de parler, le Polypier doit se composer d'un tissu vivant solidifié par un dépôt intérieur de carbonate calcaire, et doit continuer à croître après que ce dépôt s'est déjà effectué. Je me bornerai pour le moment à signaler ces divers faits, mais je les exposerai avec détail lorsque je traiterai spécialement de ces Zoanthaires, sur la structure desquels je me propose de revenir dans une autre occasion.

§ 13. Enfin les Polypes agrégés du Corail et des Gorgones ren- trent aussi dans ce qui semble être la règle commune relativement au mode de formation du Polypier. Lorsqu'on observe celui-ci à l'état frais, on voit qu'il ne consiste pas seulement en une tige inorganique qu'entoureraient des Polypes réunis en faisceaux, mais qu'il se compose d'une masse rameuse de consistance charnue, commune aux divers Polypes, masse dont le tissu est farci d'une multitude de cristaux confus de carbonate calcaire, exactement comme chez les Alcyons, et dont le centre est creusé de canaux longitudinaux entre lesquels se développe un axe solide composé aussi de carbonate de chaux, mêlé à une matière animale, ou bien d'une substance semi-cornée, très analoge à celle qui donne à l'enveloppe tégumentaire des Sertulaires sa consistance cartilagineuse. C'est cette portion intérieure qui, isolée par la dessiccation et le frottement, est regardée par les auteurs comme constituant à elle seule le Polypier,
mais dans la réalité elle n'en forme qu'une partie plus solide que le reste.

§ 14. Les divers faits que nous venons de passer en revue semblent prouver que l'opinion généralement adoptée relativement à la nature et au mode de formation des Polypiers, est incorrecte, et que ces corps, loin d'être toujours des croûtes extérieures et sans connexions organiques avec les animaux qui les produisent, sont des parties intégrantes de ces êtres, et consistent en un tissu organisé dont la substance se charge plus ou moins de matières corrées ou calcaires, déposées dans sa profondeur, et dont la nutrition s'opère par intus-susception. Chez tous ces animaux il existe une tendance à l'endurcissement de la portion tégumentaire et reproductrice du corps, mais le degré auquel cette solidification arrive, varie beaucoup et détermine seule les différences qui existent entre les espèces distinguées par les zoologistes sous les noms de Polypes nus, de Polypier flexible, de Polypes charnus, et de Polipes à Polypier lithoïde. Le Polypier cartilagineux ou lithoïde d'un Sertularien ou d'un Zoanthaire, n'est pas, comme on le dit ordinaire, une demeure que ces animaux se construisent, c'est en quelque sorte leur peau qui constitue la charpente solide de leur corps, et qui de même que le squelette des animaux vertébrés, affecte tantôt la forme membraneuse, tantôt une texture cartilagineuse, et d'autres fois un état en quelque sorte osseux.
Notice sur un nouveau genre de pachyderme fossil nommé *Oplotherium*.

Par MM. de Laizer et de Parieu.

Quelque multipliés qu’auraient pu se trouver dans les premières époques de la création animale, ces Pachydermes qui semblent avoir été remplacés en partie sur notre globe par des herbivores généralement plus utiles à l’homme, il ne reste peut-être guère d’espoir aux Paléontologues de nos contrées d’ajouter beaucoup de nouveaux genres à ceux si nombreux tirés de leurs tombeaux naturels par la savante nécromanie de Cuvier.

Toutefois il se trouve des restes nombreux d’un Pachyderme à peu-près inconnu dans les sédiments tertiaires du bassin de l’Allier. Ce fut un contemporain de ces animaux fossiles de toute classe, dont l’un de nous signala en 1824 les premiers ossemens et qui ont rendu peu-à-peu, par des exhumations successives, les vallées de l’Auvergne aussi intéressantes pour le paléontologue que l’est pour les géologues le spectacle classique des volcans éteints.

Ce pachyderme qui fait le sujet de la publication actuelle nous paraît être le même que celui dont M. Geoffroy S.-Hilaire a signalé l’existence dans la Revue encyclopédique (1833), et dont il a proposé de faire un sous-genre avec le nom d’*Anoplotherium laticurvatum*; en regardant aussi comme possible d’en constituer un genre à part sous le nom de *Cyclognathus*.

Ce savant ne connaissait alors qu’quelques fragments de mâchoires inférieures, et cette donnée trop incomplète ne lui avait pas permis d’arriver aux caractères les plus génériques dans l’animal dont il s’agit.

De nombreux fragments de la tête de ce mammifère, tirés des gîtes de Perrier, Cournon, Chaptuzat, Gannat, ont été recueillis successivement depuis plusieurs années dans la collection de l’un de nous. Les fragments que nous publions proviennent tous,
à l'exception de celui qui est représenté dans la fig. 8, pl. 9, du grès friable de Chaptuzat.

Dans ces fragments, l'élévation du condyle au dessus des dents inférieures, les tubercules de la couronne des molaires, la présence des canines et incisives supérieures signalent au premier regard un animal placé à côté des petits Palaeotheriums, Anoplotheriums, Lophiodons, c'est-à-dire un de ces Pachydermes pygmées qui ne semblent plus représentés aujourd'hui dans le règne animal que par les Damans de l'Arabie et du Cap. La longueur de la série dentaire ne dépasse guère en effet 0,004 dans la plupart de nos fragments.

Les figures qui se rapportent à la mâchoire supérieure (1,2,3) font connaître assez exactement la série des dents qu'elle garnissait. Cette mâchoire était armée de chaque côté de trois incisives, une canine et sept molaires, le tout en série continue comme dans ce genre anoplotherium qui paraît avoir été si répandu sur le sol qu'occupe aujourd'hui la France.

Mais malgré ce rapprochement important, un autre caractère générique de l'Anoplotherium, celui que Cuvier, en le découvrant, a voulu sceller dans son nom même, c'est-à-dire la faiblesse des canines réduites au niveau des molaires, ce caractère négatif ne se retrouve point chez notre Pachyderme qu'on ne saurait appeler, sous ce rapport, un animal sans armes. Chez lui en effet, les canines dépassent la ligne formée par les pointes des molaires. Elles sont armées d'une petite haste un peu recourbée à leur sommet.

D'un autre côté l'incisive la plus rapprochée de la ligne médiane déborde encore plus sur la canine elle-même, que celle-ci sur les molaires. Elle s'abaisse verticalement en présentant en avant un peu de convexité, et ressemble à une incisive de rongeur. Quant aux deux autres incisives, elles étaient probablement intermédiaires par leur dimension comme par leur position à l'égard des précédentes.

Ce développement des dents antérieures et supérieures dans notre pachyderme, est un trait fort remarquable et caractéristique à nos yeux, surtout quand on l'oppose aux autres traits qui semblent lier ce même animal à l'anoplotherium dont le bout du mu-
seau est organisé d'une manière si différente. Les sept molaires supérieures se divisent en trois groupes, dont deux avant-molaires comprimées latéralement, un peu trilobées et assez tranchantes, comme paraissent l'être celles de l'Adapis d'après l'ouvrage de M. Cuvier. Ces avant-molaires sont pourvues de deux racines.

Elles sont suivies de deux dents intermédiaires par leur forme comme par leur situation entre le type précédent et celui sur lequel sont formées les arrière-molaires. L'une d'elles, l'antérieure a de plus que les avant-molaires, un tubercule interne qui prête à sa couronne une forme un peu triangulaire. Dans la suivante ce contour triangulaire semble avoir été comprimé d'avant en arrière, de façon à présenter l'aspect d'un prisme conché transversalement et taillé sur son arrête saillante en deux tubercules pyramidés; plus un troisième externe fort accessoire. Cette quatrième molaire est en quelque sorte la moitié d'une des trois suivantes, à la forme desquelles sa propre forme fait passer par une progression simple. Ces dernières vraies molaires, sont organisées sur un type commun. Leur couronne est à-peu-près carrée. Elle présente à la surface deux prismes couchés en travers, et qui convergent néanmoins un peu vers l'intérieur de la mâchoire. De ce côté leurs extrémités sont même réunies dans un bord légèrement contourné, et reposent sur une racine commune fort large, tandis qu'à l'extrémité opposée, c'est-à-dire externe, les prismes s'appuient chacun sur une racine propre.

Au fond, la composition des couronnes de ces arrière-molaires est tirée d'éléments à-peu-près pareils à ceux qui sont disposés à la surface des dents correspondantes chez plusieurs autres Pachydermes, tels que l'anoplotherium, le choeropotamus, l'anthracotherium. Mais l'ordre dans lequel sont rangés ces éléments est différent ou pour mieux dire inverse. Ainsi, dans les Pachydermes que nous venons de rappeler, le prisme antérieur est divisé en trois petites pyramides, tandis que le prisme postérieur n'offre que deux pointes bien marquées, la troisième étant rudimentaire. Ici c'est le contraire, et le prisme postérieur répond au prisme antérieur dans les molaires des autres Pachydermes.
en comparaison et réciproquement. Ainsi une dent du nouveau fossile est en quelque sorte une des autres dents plantée à rebours.

On voit dans l'un de nos fragments (fig. 2 et 4), une portion assez considérable du front pour pouvoir apprécier sa forme bombée d'une façon assez élégante.

Les os du nez ne sont point disposés pour avoir pu servir de point d'attache à une trompe.

Ils offrent dans leur milieu une dépression longitudinale qui a son origine entre les frontaux, et qui partage d'une manière gracieuse le museau d'ailleurs un peu cambré dans son profil.

La mâchoire inférieure nous offre encore une sorte de problème relatif à la composition de la série dentaire.

Dans les fragments que nous publions, on ne voit en place que les six dernières molaires et les deux incisives les plus rapprochés de la symphyse. Entre celles-ci et celles-là sont deux alvéoles que nous supposons avoir été remplies par une canine et une incisive, ce qui rendrait la formule dentaire inégale dans ses deux termes.

On voit par la fig. 7, que toutes ces dents sont en série continue. Bien plus (et c'est pour cela que deux alvéoles se voient seulement dans notre figure), les trois incisives, si notre conjecture précédente est juste, auraient en quelque sorte chevauché entre elles, celle qui manque ayant son alvéole à côté et en dehors des deux existantes qui sont presque superposées l'une à l'autre.

Les incisives sont du reste couchées à-peu-près comme dans le daman et le cochon, ce qui leur permettait de coincider avec le recourbement des incisives supérieures, sous un angle d'environ 135°. Cette disposition des incisives d'en bas rend l'os qui les porte plus court que la mâchoire supérieure.

Les molaires inférieures en place sont latéralement beaucoup plus étroites que celles d'en haut, différence qui s'observe aussi chez d'autres Pachydermes, à divers degrés.

Les premières ressemblent aux correspondantes d'en haut. On voit leur forme s'élargir dans celles qui leur succèdent, jus-
qu'aux trois dernières, dont la coupe vue en dessus (fig. 6), offre deux triangles à côté l'un de l'autre, ayant leurs bases à-peu-près sur une même ligne vers le dedans de la mâchoire, mais laissant entre eux un petit angle ouvert en dehors.

À chaque coin des triangles correspond une aspérité sur la couronne. L'arrière-molaire a un lobe supplémentaire comme dans les Palœothères, Anoplotheres, Anthracothères. Il importe d'observer que les aspérités de ces molaires sont beaucoup plus élevées en dedans qu'en dehors ainsi que le montre la fig. 7. Il en est de même de la base des dents qui est posée obliquement dans le même sens, ce qui donne plus de largeur à la branche maxillaire du côté intérieur que du côté extérieur.

Cette obliquité de la surface de trituration dans les mâchelières inférieures par rapport au plan de l'os qui les supporte, la forme générale de ces mêmes dents, celle du devant du crâne sauf le sillon médian ci-dessus mentionné, rappellent un peu le Chevrotin, transition entre les pachydermes et les Ruminants dont nous montrerons des signes plus particuliers dans le nouveau genre fossile.

Le condyle est très élevé; quoique un peu endommagé, nous avons pu reconnaître dans le fragment représenté fig. 5 sa forme transversale. Il est placé obliquement, un peu comme dans les ruminants, mais il est plus fort et plus arrondi que chez les animaux de cet ordre.

L'Apophyse coronoïde est, aussi renversée en arrière, par un nouveau rapport avec les ruminants.

L'angle de la mâchoire offre un contour arrondi tout particulier et dont M. Geoffroy St.-Hilaire a tiré les noms que nous avons rappelés plus haut. Quoique n'ayant pas la forme épaissie qui se voit chez le Daman, cette partie de la mâchoire nous a paru dans le fragment, fig. 8, plus renflée que chez l'ensemble des Pachydermes. L'arc extérieur qu'elle dessine constitue sur le bord parotidien de la branche montante une sorte de talon relevé à angle aigu et par conséquent plus prononcé que la saillie correspondante chez l'Anoplotherium commune, le Tapir, le Rhinocéros unicorne. Sur le bord inférieur de la branche maxillaire, le contour se termine par une autre saillie ordonnée.
pour ainsi dire symétriquement par rapport à la première, mais d'une forme plus obtuse que celle-ci. Ce talus sur le bord inférieur de la mâchoire est plus fort que le correspondant dans le cheval ou le Rhinocéros unicorn, mais n'est pas comparable à l'apophyse considérable qui se voit à la même place dans le squelette de l'Hippopotame.

Nous venons d'envisager l'angle de la mâchoire de notre pachyderme dans ses rapports avec l'ostéologie des animaux du même ordre. Cet angle se trouve chez certains Rongeurs. Mais il peut être aussi l'objet d'une comparaison intéressante pour ce qui concerne son rebord sur le côté parotidien.

Il est en effet des ruminants qui ont cette apophyse bien plus marquée que notre pachyderme : ce sont les espèces de la famille Camélienne.

Et ces mêmes animaux ont aussi, par une singulière coïncidence, des canines qui les détachent du groupe des Ruminants ! Ils ont un condyle intermédiaire par sa convexité entre celui des ruminants et celui des pachydermes !

M. Cuvier a signalé une transition analogue de l'Anoplotherium au chameau, en faisant observer que « le chameau lui-même s'écarte assez des ruminants par ses incisives, ses nombreuses canines, un os de plus au tarse, une autre nature de sabots et même par quelques différences dans la forme de l'estomac. »

Par ces rapports communs de l'anoplothère et de notre pachyderme avec un ordre différent du leur, se trouve confirmé de nouveau ce que nous avons énoncé plus haut sur l'affinité respective des deux genres, affinité qui les a long-temps fait confondre !

Cependant comme placé ainsi en regard de l'anoplothérium, notre pachyderme s'en sépare à cause d'un caractère opposé à celui dont l'anoplothérium a tiré son nom, et qu'il a au contraire, du moins dans sa mâchoire supérieure des canines et des incisives relativement très développées, nous avons cru que le nom d'Oplotherium pourrait exprimer naturellement et par
une antithèse fort simple sa juxtaposition à l'anoplotherium et sa dissemblance d'avec lui. (1)

Du reste, après avoir étudié et cherché à bien apprécier le type commun dont nous avons cru reconnaître l'empreinte dans nos fragments fossiles, nous serions loin de pouvoir affirmer l'identité des espèces dont ils proviennent.

Au contraire, sans vouloir attacher dès à présent une grande importance à la distinction des espèces d'un genre nouveau, nous devons dire néanmoins quelques mots des différences qui se remarquent entre les fragments que nous publions et qu'il eût été impossible au dessin de rendre parfaitement.

Les fragments représentés dans les fig. 1 et 7 sont de moindre dimension que ceux représentés dans les fig. 2 et 5. Le fragment 7 vu du côté correspondant à celui montré dans la fig. 5 a une voussure beaucoup moins marquée que celle qui se voit dans cette dernière figure.

Il serait possible que la différence de l'âge et du sexe rendit compte à la fois de la diversité des proportions et des formes entre ces deux fragments.

Dans tous les cas les mêmes circonstances ne serviraient pas à ce que nous croyions, à expliquer la différence notable de largeur entre la branche maxillaire de la fig. 8 et le côté caché de la fig. 5, malgré l'égalité de longueur de la série des molaires dans les mêmes fragments.

Cette différence que le dessin de nos fragments ne laisse pas soupçonner est résultée pour nous d'un examen du fragment fig. 5, détaché de la position naturelle dans laquelle on l'a représenté.

La comparaison de cette face externe avec la correspondante dans la fig. 8, donne une différence si marquée à l'œil et au compas (a), que nous n'hésitons point à la signaler comme se rapportant à l'existence de deux espèces d'Oplotherium, à l'une

(1) Suivant un large système de zooclassie, on pourrait considérer l'Anoploïtre et l'Oplo-thère comme deux sections d'un grand genre pour lequel nous proposerions le nom de Ple-regnathus.

(2) Cette différence est de 0.001 à 0.002.
desquelles, sous le nom de *laticurvatum*, nous rattacheron le fragment de la fig. 8, tandis que nous laisserons réunies au moins provisoirement dans l'autre, sous le nom d' *Oplotherium leptognathum*, les autres fragments qui, il est bon de le rappeler, sont tous renfermés dans une gangue de même nature minérale.

Il est bon de terminer cette notice par la formule abrégée du nouveau genre et de ses deux espèces jusqu'ici connues.

**Ordre des Pachydermes.**

**Genre Oplotherium** (Nob.)

**Caractères.** — Dents en série continue.

Canines et incisives moyennes suréminentes par rapport aux molaires dans la mâchoire supérieure.

Disposition des croissans sur les couronnes des arrière-molaires supérieures exactement inverse de celle des Pachydermes qui ont des couronnes composées d'éléments analogues.

Angle de la mâchoire inférieure constitué par un contour circulaire en saillie sur les deux branches.

Sillon sur la ligne moyenne du front et du nez.

Formule dentaire (en partie présumée pour la mâchoire inférieure):

```
Mol. 2 Canines 4 Inc. 6
```

Deux espèces connues:

*Oplotherium laticurvatum.*

*Oplotherium leptognathum.*

**Explication des figures de la planche 9.**

**Figures 1 et 2.** Fragments de mâchoire supérieure en dehors.

3. Fragment de la figure 2, vu en-dessous.

4. *Id.* perpendiculairement en dessus.

5. Mâchoire inférieure en dedans.

6. Même fragment en dessus.

7. Autre fragment de mâchoire inférieure en dehors.

8. Autre fragment de mâchoire inférieure en dehors.

P. S. M. Bravard a annoncé l'existence d'un petit pachyderme, qu'il a nommé *Cainothère*, avant la publication ci-dessus énoncée de M. Geoffroy.... Il a promis de le décrire, il y a de cela plus de dix ans,
Recherches anatomiques sur la manière dont l'épiderme se comporte avec les poils et avec les ongles,

Par M. Flourens.

(Lues à l'Académie des Sciences, le 19 novembre 1838.)

On n’est pas encore d’accord, en anatomie, sur la manière dont l’épiderme se comporte, soit avec les poils, soit avec les ongles. Et d’abord, pour ce qui est des poils, Meckel a décrit depuis long-temps, et avec une grande exactitude, les gaines particulières que l’épiderme, en se réfléchissant vers le derme, fournit à la base de chaque poil ; de sorte que, comme il le dit lui-même : « l’épiderme a, du côté qui est tourné vers la peau, une infinité de petites racines blanches, transparentes, qui manquent entièrement dans l’épiderme qui couvre la paume de la main et la plante des pieds. » (1)

Mais ces gaines particulières, ces racines, pour me servir de l’expression de Meckel, s’arrêtent-elles à l’entrée du bulbe du poil, comme le veulent quelques anatomistes ? ou bien, pénètrent-elles dans ce bulbe, et en tapissent-elles tout l’intérieur, comme le veulent quelques autres ? telle est la première difficulté que je me suis proposé de résoudre.

Si l’on examine un morceau d’épiderme, pris sur un individu adulte, et détaché du derme par la macération, on voit toute la face interne de cet épiderme, toute la face qui correspond au derme, hérissée de prolongements, lesquels sont les gaines mêmes que l’épiderme fournissait aux poils. De plus, je suppose chaque poil extrait de sa gaine, la surface externe de cet épiderme présente autant de petits trous qu’il y avait de poils.

Si l’on examine, au contraire, un morceau d’épiderme, pris sur un fœtus très jeune, et également détaché du derme par

(1) Meckel, sur la nature de l’épiderme, etc.
la macération, on ne voit plus ni de prolongements épidermiques à la face interne, ni de trous à la face externe. Les deux faces sont parfaitement continues et lisses.

Enfin, si l'on examine un morceau d'épiderme, pris sur un fœtus un peu plus âgé, et toujours détaché du derme par la macération, on voit, à la face interne, de petits prolongements, et, à la face externe, de petites éminences dont aucune n'est percée. Ces prolongements internes, ces éminences externes et non percées, sont les gaines que l'épiderme fournit aux poils. Toutes ces gaines, ainsi que les poils qu'elles recouvrent, ont une direction très oblique ; et, à cet âge, elles sont toutes, comme je viens de le dire, parfaitement continues. Ce sont, en un mot, des gaines complètes, comme les gaines d'épiderme et de corps muqueux qui recouvrent les papilles de la langue, et que j'ai décrites dans un autre mémoire. (1)

Ces trois états de l'épiderme se voient sur les pièces que je mets sous les yeux de l'Académie. La pièce n° 5 montre l'épiderme pris sur un individu adulte, avec ses prolongements internes et ses trous à la face externe. Les pièces 1 et 3 montrent l'épiderme du fœtus, avec ses deux faces également continues et lisses ; et la quatrième montre l'épiderme pris sur un fœtus un peu plus âgé, et ayant ses gaines complètes.

Il y a donc trois états successifs par lesquels passe l'épiderme, considéré dans ses rapports avec les poils. Dans un premier état, il est parfaitement lisse, continu, sans gaines particulières ; dans un second, il a des gaines complètes ; et dans un troisième, ces gaines sont percées à leur bout externe (2). En d'autres termes, il y a un premier état où le poil n'a pas encore agi sur l'épiderme ; un second où l'épiderme recouvre encore le poil, bien que le poil, revêtu de sa gaine, dépasse déjà la surface de l'épiderme ; et un troisième où le poil traverse l'épiderme et le perce. Et ces trois états montrent, par leur succession même, que l'épiderme est toujours placé sur le poil; puisque, d'abord,

(1) Voyez Compte rendu, t. IV, p. 445.
(2) Je n'ai pas besoin d'ajouter qu'elles le sont toujours à leur bout interne, puisque, comme je l'ai montré ici, l'épiderme ne passe jamais par-dessous le poil.
le poil n’arrive pas jusqu’à l’épiderme ; puisque, ensuite, l’épiderme recouvre le poil et lui fournit une gaine complète ; et que ce n’est, enfin, que dans le troisième et dernier état que le poil traverse l’épiderme et le perce.

L’épiderme, en se réfléchissant sur le derme pour fournir des gaines à la base des poils, s’arrête donc à l’entrée du bulbe et à la base du poil (1), et ne passe pas par-dessous la racine du poil pour tapisser l’intérieur du bulbe.

Les prolongements de la face interne de l’épiderme n’étant, comme je viens de le dire, que les gaines des poils, ces prolongements devaient manquer à la paume des mains et à la plante des pieds, et ils y manquent effectivement, comme chacun sait. Mais la face interne de l’épiderme, considéré dans ces parties, n’appelle pas moins, quoique sous un autre rapport, l’attention de l’anatomiste.

Les pièces 10, 6 et 2, sur lesquelles j’appuie mes descriptions, représentent cette face interne : la première, sur l’épiderme de la paume de la main d’un individu adulte ; la seconde, sur l’épiderme de la face palmaire du doigt index d’un fœtus ; et la troisième, sur l’épiderme de la plante du pied du même fœtus. On peut se faire une idée, sur ces trois pièces, de l’admirable régularité qui caractérise la structure de cette face interne. Le fond commun de cette structure est un ensemble de lignes, les unes continues, les autres ponctuées, la plupart simples, quelques-unes bifurquées. En général, une ligne ponctuée alterne régulièrement avec une ligne continue, et c’est ce qui se voit surtout à l’épiderme de la paume de la main de l’individu adulte, et à l’épiderme du doigt du fœtus. A l’épiderme du talon du fœtus, les lignes ponctuées ne sont pas toujours aussi nettement séparées des lignes continues ; les points y empiètent quelquefois sur les lignes; mais partout, soit au doigt, soit au talon, soit à la paume des mains, ces lignes et ces

(1) Mais, pour arriver jusqu’à l’entrée du bulbe et jusqu’à la base du poil, il faut qu’il pénètre dans l’enfoncement du derme, qui conduit au bulbe ; et, par-là même, il forme tous ces prolongements qui hérisson la face interne de l’épiderme, et qui constituent les gaines des poils.
points sont l'empreinte exacte des éminences et des sillons de la face externe du derme, de la face du derme qui correspond à la face interne de l'épiderme.

Enfin, la pièce n° 9 qui est sous les yeux de l'Académie, peut être regardée comme formant une sorte d'appendice à l'un de mes précédents Mémoires sur les deux épidermes de la peau humaine (1). Cette pièce présente ces deux épidermes, détachés l'un de l'autre par une longue macération, sur la face dorsale du petit doigt de la main; et là, l'épiderme interne a un aspect blanchâtre très prononcé; aspect qui, en général, est un des caractères du corps muqueux, et qui, sans doute, a été la cause pour laquelle plusieurs anatomistes ont attribué un véritable corps muqueux à la peau des doigts.

Je passe à la manière dont l'épiderme se comporte par rapport aux ongles; et ici les opinions sont tout aussi partagées que pour ce qui concerne les poils.

L'opinion la plus commune est que l'épiderme passe par-dessus l'ongle, et se confond avec sa face externe (2); d'autres veulent que l'ongle ne soit, à proprement parler, qu'une continuation de l'épiderme; quelques-uns pensent enfin que l'épiderme passe par-dessous l'ongle et en tapisse toute la face concave. Cette dernière opinion paraît avoir été celle de Bichat; et, plus récemment, elle a été celle de M. Lauth.

« L'épiderme, dit M. Lauth, accompagne le derme exactement... en sorte qu'il tapisse aussi la face concave de l'ongle. (3) »

Bichat avait déjà dit que « l'épiderme, en se confondant avec l'ongle, semble former sa lame interne. (4) »

La difficulté était donc, pour l'ongle, à peu-près la même que pour les poils; et, pour la résoudre, il fallait, de même recourir à l'examen de ce qui se voit, non dans l'adulte, où la

(1) Voyez Compte rendu, t. xxxi, p. 699.
(2) Béclard dit: « L'épiderme se réfléchit sur la racine de l'ongle et se prolonge sur sa face externe, qu'il recouvre ainsi d'une lame superficielle très mince, qui se confond avec elle. » (Eléments d'anatomie générale.)
(3) Nouveau manuel de l'anatomiste.
(4) Anatomie générale.
plupart des rapports primitifs sont plus ou moins changés, mais dans le fœtus, où les rapports naturels, les rapports complets, subsistent encore.

Or, a considérer les rapports de structure qui nous occupent, dans les fœtus, et particulièrement dans les fœtus des Pachydermes, des Ruminants, des Rongeurs, il est aisé de voir, et de voir avec évidence, que l'épiderme passe par-dessus l'ongle. Les pièces 13, 14, 15 et 16, que je présente à l'Académie, montrent, sur des fœtus de cochon, l'épiderme passant par-dessus la face antérieure, par-dessus la face postérieure, et par-dessus la face latérale de l'ongle. La pièce 17 montre cet enveloppement complet de l'ongle par l'épiderme, sur un fœtus de lapin.

Dans les fœtus des quadrupèdes, et particulièrement des quadrupèdes herbivores, l'épiderme passe donc par-dessus l'ongle; et, en l'enveloppant de toutes parts, il lui forme une gaine complète.

L'analogie porte à croire qu'il en est de même dans le fœtus humain; mais, faute de fœtus, tout à-la-fois assez jeunes et assez bien conservés, je n'ai pu réussir encore à y suivre, d'une manière sûre, l'épiderme sur toute la face externe de l'ongle.

Tout le monde connaît ces feuillets longitudinaux du derme, qui, placés sous l'ongle, constituent la véritable matrice de l'ongle; et qui, très développés dans le cheval, dans le bœuf, dans le cochon, etc. y ont reçu, de la part des anatomistes vétérinaires, le nom de chair cannelée. Tout le monde sait aussi que cette chair, ou plutôt cette partie du derme qui sécrète l'ongle, n'est pas partout cannelée. A la sole, à la fourchette, au bourrelet (1), le tissu feuilleté est remplacé par le tissu villoux. Les filaments très déliés, très fins qui composent ce tissu villoux, sont surtout très développés et très remarquables au bourrelet ou bord supérieur de l'ongle; et, soit qu'on les considère au bourrelet, à la sole, ou à la fourchette, ils donnent à la partie de l'ongle qui leur correspondent une disposition particulière et toute différente de celle qui est propre aux parties de l'ongle

(1) Voyez M. Girard : Traité du pied dans les animaux domestiques.
qui correspondent au tissu cannelé. Ainsi, les parties de l'ongle qui répondent aux feuilllets du tissu cannelé représentent ces feuilllets renversés; et les parties qui répondent aux filaments du tissu villeux représentent un ensemble de petits tuyaux, sortes de gaines ou d'étuis, sécrétés par ces filaments mêmes.

Tous ces détails de structure sont à peu près les mêmes, du moins pour le fond (1), dans le cheval, dans le bœuf, dans le cochon, etc.; et, dans tous ces animaux, ils sont également connus. Mais, ce qui me paraît ne pas l'être encore, c'est que jusque dans l'ongle humain, on retrouve, indépendamment des feuilllets du tissu cannelé, que tous les anatomistes y ont décrit, un certain nombre de filaments qui répondent évidemment au tissu villeux. Dans l'homme, ces filaments sont placés et comme cachés sous le repli du derme qui recouvre la racine de l'ongle, sous cette racine même, et à l'origine des feuilllets longitudinaux. On les voit reproduits dans la pièce 8 qui est sous les yeux de l'Académie.

Les conclusions de ce mémoire sont: que l'épiderme passe, à tout âge, par-dessus le poil: qu'il passe, de même, par-dessus l'ongle; et que, jusque dans l'ongle humain, se retrouvent des vestiges du tissu villeux ou filamenteux des quadrupèdes herbivores.

(1) Il y a en effet, quelques différences de détail. Dans le cheval, les filaments du bourrelet touchent aux feuilllets longitudinaux; dans le bœuf, les filaments, plus fins encore, du bourrelet sont séparés des feuilllets longitudinaux par un espace à brins plus courts et presque ras. Dans le mouton, l'espace intermédiaire entre les filaments du bourrelet et les feuilllets longitudinaux, est proportionnellement moins grand que dans le bœuf; dans l'un et l'autre (le bœuf et le mouton), la sole est toute garnie de filaments, lesquels sont surtout remarquables dans le mouton; enfin les filaments du cochon ont quelque chose de moins délié, de plus massif, de plus grena que les filaments des ruminants et des solipèdes.
SUR un fœtus humain à trois têtes,

Par les Docteurs REINA et GALVAGNI, de Catane. (1)

(Extrait communiqué par M. ISID. GEOFFROY SAINT-HILAIRE.)

Le monstre qui fait le sujet de cet article est le fruit de la première grossesse d'une jeune femme de tempérament lymphatique, dont la mère avait eu, dans le cours de trente-six ans, dix-huit fils, et qui n'avait éprouvé ni terreur, ni aucune impression morale. Le soir du 5 novembre 1832, cette jeune femme, alors parvenue aux derniers jours du huitième mois, de sa grossesse, fut assaillie des premières douleurs de l'enfantement. Bientôt, le col de l'utérus se dilata, les membranes se déchirèrent et les eaux coulèrent; mais quatre jours se passèrent au milieu de violentes douleurs sans que l'accouchement pût se terminer. Ce fut alors que le docteur Reina fut appelé. Un premier examen lui fit croire à la présence soit de deux jumeaux, soit d'un monstre dicéphale; mais, plus tard, furent reconnues à-la-fois et l'existence d'une troisième tête, et l'impossibilité absolue d'un accouchement naturel.

Sans suivre ici les auteurs dans la relation de tous les essais que M. Reina fit successivement, il nous suffira de dire que l'une des têtes étant déjà privée de vie, M. Reina se décida à l'amputer, et obtint bientôt après l'être monstrueux, mais non sans avoir été obligé à une nouvelle mutilation du fœtus, dont nous allons donner la description.

(1) M. Isidore Geoffroy, dans le troisième volume de son Histoire générale des Anomalies, a déjà donné en France un extrait des deux mémoires publiés sur l'enfant tricéphale, par MM. Reina et Galvagni, et qui fait partie des Atti dell' Accademia Gioenia (tom. viii). Nous joignons à l'extrait beaucoup plus étendu et plus complet que nous donnons à notre tour, la figure, jusqu'à présent inédite, de l'enfant tricéphale.
§ 1. Examen extérieur.

Le monstre se composait d'un tronc assez gros, avec deux cous, trois têtes, trois membres supérieurs, deux inférieurs, et des organes génito-urinaires uniques; le sexe était mâle. Entre le tronc et les quatre membres (en laissant de côté le cinquième inséré au dos) il y avait une disproportion marquée, ceux-ci ayant le volume normal, et le premier, au contraire, étant deux fois plus gros qu'à l'ordinaire (1). Il était en effet aussi gros que long, en sorte que les deux plans latéraux du tronc étaient égaux à la distance du pubis au cou. Les têtes, assez bien proportionnées et complètes, étaient ainsi disposées: la gauche était portée sur un cou qui lui était propre; l'intermédiaire et la troisième n'avaient au contraire pour elles deux qu'un cou unique et épais.

Dans le thorax, on remarquait un défaut notable de symétrie; la moitié droite était plus large que la gauche. A droite existaient deux mamelons, tandis qu'il n'y en avait qu'un seul à gauche. Le volume du bas-ventre était considérable, ou pour mieux dire, double de l'ordinaire. L'ombilic était unique.


D'après ce qui vient d'être exposé, ce monstre peut être considéré comme divisé en trois segments. Dans le premier, qui est supérieur, toutes les parties sont triples; dans le moyen,

(1) Nous rectifions ici une erreur grave, que nous ne pouvons attribuer qu'à une faute typographique. La phrase italienne, telle qu'elle est construite, semble dire précisément le contraire.
doubles; dans le troisième ou l'inférieur, uniques. Les trois têtes et les trois cous représentent le premier; le tronc et les membres thoraciques constituent le second; enfin l'appareil génito-urinaire externe et les membres abdominaux forment le troisième. Ainsi l'anomalie extérieure s'efface à mesure que l'on s'éloigne du segment supérieur; elle est au maximum dans les têtes et les cous; moindre dans les membres; un peu moindre dans le thorax; très faible dans la région supérieure de l'abdomen, et finalement nulle dans la région inférieure de l'abdomen et dans les membres abdominaux.

§ II. Examen intérieur.

Les auteurs examinent successivement les modifications du thorax, de la cavité abdominale, du système vasculaire, du système nerveux, du système musculaire et du système osseux.

Thorax. Par son amplitude non moins que par un prolongement membraneux qui le divisait en deux cavités, le thorax peut être considéré comme double; mais les deux thorax n'avaient point les mêmes dimensions : le droit était plus large que le gauche. Le prolongement membraneux résultait évidemment de l'adossement des plèvres; il était placé verticalement dans la ligne médiane, et était en rapport extérieurement avec le sternum, postérieurement avec un bord cartilagineux formé par les côtes et qui sera plus bas décrit; supérieurement avec les deux clavicules du bras dorsal, inférieurement avec le diaphragme. Dans chaque cavité se trouvait un médiastin bien formé, un lobe de thymus qui avait en outre un troisième lobe situé dans le prolongement plus haut décrit, un appareil respiratoire et un cœur.

L'appareil respiratoire droit, c'est-à-dire celui qui était situé du côté des deux têtes à cou commun, se composait de deux larynx, d'une trachée-artère unique, les premiers anneaux exceptés, et de poumons, anormaux seulement dans leur volume et le nombre de leurs lobes, le gauche en ayant trois, et le droit quatre. L'appareil respiratoire gauche était régulier. Le cœur gauche était, comme l'appareil respiratoire de son côté,
extrêmement normal, mais l'oreillette et le ventricule droits du cœur droit étaient mal conformés; leur forme était celle d'un sac long de sept lignes sur un diamètre de quatre environ.

Abdomen. L'estomac était unique: sa position était régulière, mais sa capacité évidemment plus grande qu'à l'ordinaire. Quant aux œsophages, dont c'est ici le lieu d'indiquer la disposition, ils offrent des modifications analogues à celles des conduits aériens; il en existe trois supérieurement parmi lesquels le droit et le moyen ne tardent pas à se conjoindre en un seul, qui, à son tour, un peu au-dessus du cardia, se réunit avec l'œsophage gauche.

Les intestins offraient une disposition extrêmement remarquable: après un duodénum unique et de dimension régulière, le canal intestinal se bifurquait en deux jéjunums et deux iléums distincts. Ces deux iléums se réunissaient un peu au-dessus de la valvule iléo-cœcale, pour se continuer avec un cœcum, un colon et un rectum uniques. L'anus était imperforé.

La rate, le pancréas, le foie avec sa vésicule biliaire, étaient uniques. Les deux poumons étaient normalement conformés; mais, dans le foie, le lobe de Spiegel se trouvait si grand qu'il égalait les autres lobes.

L'appareil urinaire se composait d'un seul rein, de trois uretères, dont deux se réunissant bientôt, et d'une veine urinaire unique. Le rein avait la forme d'un fer-à-cheval, et était situé au niveau de la troisième vertèbre des lombes. Il était presque de moitié plus gros que dans l'état normal.

L'appareil génital, de même que la vessie, ne présentait rien qui ne fût normal.

Système vasculaire. — Il existait deux aortes; l'une et l'autre présentaient une distribution anomale.

Ainsi, de la courbure de l'aorte droite s'élevaient cinq troncs destinés trois pour la tête droite et la moyenne, une pour le membre thoracique droit, et le cinquième pour le membre dorsal. Parmi ces troncs, la carotide droite de la tête droite avait son origine presque commune avec la sous-clavière droite, tandis que la carotide gauche naissait de la partie moyenne de la courbure, près de la sous-clavière gauche. Il n'y avait point de
tronce indominié. Parmi ces troncs artériels qui toutes offrent un mode remarquable de distribution, la sous-clavière gauche se portait au membre dorsal et se réunissait avec la sous-clavière droite dans le voisinage de la tête de l'huméris et de leur réunion résultait un tronce, d'un diamètre évidemment supérieur à celui des artères brachiales des membres antérieurs.

La portion thoracique de l'aorte droite était dans l'état ordinaire, mais l'abdominale manquait des troncs suivans: l'artère splénique, les capsulaires, les rénales, les artères des uretères. Le tronce coeliaque se divisait seulement en deux branches, l'hépatique et la coronaire stomachique. Finalement la portion abdominale de l'aorte droite se réunissait avec la portion correspondante de l'aorte gauche. Leur réunion avait lieu au niveau de la troisième vertèbre lombaire.

Les anomalies les plus considérables de l'aorte gauche consistaient dans l'absence des artères hépatiques, coronaires, stomachiques et capsulaires.

Le cœur droit recevait deux veines caves supérieures, et une veine cave inférieure réunie à la veine cave inférieure de l'autre cœur vers le bas de la colonne vertébrale. Le système veineux gauche offrait plusieurs anomalies moins remarquables.

Les artères et veines pulmonaires paraissent avoir présenté une disposition analogue à celle de l'état normal, avec cette différence, toutefois, que le nombre des branches principales des artères et des veines était en rapport avec le nombre anomaly des lobes pulmonaires.

Les vaisseaux ombilicaux étaient dans l'état ordinaire.

Système nerveux. Sur les côtés des colonnes vertébrales existaient quatre cordons nerveux, savoir: les nerfs pneumo-gastriques et les trisplanchniques. Ceux de la colonne gauche, qui se portaient à la tête séparée, étaient dans l'état ordinaire; leurs plexus et ganglions soit dans le thorax, soit dans le col, présentaient l'état ordinaire, ceux de la colonne droite se portant aux deux autres têtes. En outre, il existait de ce même côté deux cordons nerveux remarquables, de même calibre que les quatre
troncs précédemment indiqués, placés le long de la trachée-artère et de l’œsophage droits et que l’on peut considérer, disent les auteurs, comme les pneumo-gastriques internes des têtes conjointes.

Les nerfs spinaux étaient doubles comme les colonnes vertébrales.

*Système musculaire.*—Dans les deux corps conjoints, chacun présentait les mêmes muscles que dans l’état ordinaire; mais ceux des côtés internes étaient imparfaitemment développés, et se confondaient avec leurs analogues de l’autre côté. Il en était ainsi des muscles latéraux aussi bien antérieurs que postérieurs.

Le diaphragme était d’une largeur considérable, et manifestement double.

*Système osseux.* Les colonnes vertébrales présentaient les anomalies suivantes : elles étaient courbées latéralement de telle manière que la concavité de l’une regardait celle de l’autre, et que leur ensemble représentait, pour ainsi dire, les branches d’une hyperbole. La colonne droite, dans sa portion cervicale, était comme composée de deux colonnes cervicales, destinées à soutenir les deux têtes de ce côté. Dans le reste de la colonne, les vertèbres étaient en nombre et de forme ordinaire. La colonne vertébrale gauche était normale dans son ensemble. Le bassin se composait de deux sacrums, quatre iléons, dont deux imparfaits, et seulement deux ischions et deux pubis.

Chaque colonne vertébrale portait vingt-deux côtes, onze de chaque côté. Les côtes internes étaient incomplètes et se réunissaient à leurs congénères; leur ensemble formait ainsi un bord épineux entre les deux thorax.

Le sternum était d’une largeur remarquable; on y distinguait sept nœuds osseux, parmi lesquels trois des plus grands occupaient la ligne médiane. L’appendice xiphoïde était normal. Sur le manubrium, plus large qu’à l’ordinaire, s’articulaient quatre clavicules, savoir deux sur les bords latéraux, et deux sur le bord supérieur; les premières appartenant aux membres normaux, les autres au membre postérieur.
Voici quelle était la composition de celui-ci. Les omoplates, aussi bien que les clavicules étaient doubles. Les premiers avaient conservé leur position ordinaire; les secondes, au contraire, avaient été transportées dans une direction longitudinale d'avant en arrière, formant ainsi un angle aigu avec les clavicules des membres thoraciques. Les formes de ces clavicules n'étaient pas non plus normales; elles étaient très peu courbées; et leur corps n'était pas rond, mais aplati. Les os de l'épaule étaient double, il en était de même des muscles de cette région. L'humérus, qui était unique, était suivi de trois os et de l'avant-bras, dont deux paraissent avoir la conformation ordinaire; le troisième était au contraire grêle. Les muscles de cette région étaient petits et assez confus; on distinguait cependant parmi eux deux ronds pronateurs, deux cubitaux externes et deux carrés pronateurs. Les os de la main étaient, comme on l'a vu plus haut, incomplètement doubles; il est à peine utile de dire qu'il en était ainsi des muscles de cette partie du membre.

RÉSUMÉ.

Des observations qui précèdent, on peut déduire que la triple division, tracée d'après l'extérieur du corps, peut aussi être admise pour les organes intérieurs. Il existe en effet une analogie évidente entre le nombre des parties extérieures et celui des organes des cavités splanchniques. En fait, les trois têtes et les trois cous coïncident avec trois larynx, trois œsophages, de triples vaisseaux, nerfs, muscles et os vertébraux. Les parties étaient donc généralement triples dans le premier segment.

Les deux cœurs, les deux aortes et veines caves supérieures, les deux appareils respiratoires, les deux médiastins, les intestins grêles doubles, le mé sentinel plus étendu qu'à l'ordinaire et pourvu de doubles vaisseaux sanguins; l'excessif développement du diaphragme et des plexus nerveux abdominaux sont autant de faits analogues à la duplication de la ligne médiane du dos, du thorax et des membres supérieurs.
En outre, en considérant avec attention les formes des appareils décrits, on reconnaît que l'état de triplicité des organes du premier segment et l'état de duplicité des organes du second diminuent graduellement; des organes céphaliques et cervicaux thoraciques. Ainsi il n'y a pas plus de trace de triplicité pour les viscères du thorax que dans le grand développement de l'une des oreillettes et dans le nombre excessif des lobes pulmonaires droits. Les viscères abdominaux sont en partie uniques et en partie doubles, jusqu'à ce qu'enfin les membres inférieurs et l'appareil génito-urinaire soient entièrement simples.

Classification. Si l'on vient chercher la place que doit tenir dans la classification cet être si remarquablement monstrueux, on trouve que sa place est marquée dans la classe des monstres par excès, de Blumenbach; dans l'ordre diandrie de Malacera; dans les Monstruosités quantitatives selon Treviranus; dans le groupe des monstres géménés de Mayer, enfin selon M. Breschet, et en employant sa terminologie, dans l'ordre des diplogénèses, au premier genre: diplogénèse extérieure, à l'espèce diplothoracie. En tenant compte de l'existence de la troisième tête, le monstre est, si l'on peut s'exprimer ainsi, un tricéphale diplothoracique avec pénétration des deux embrygermes dans la région thoracique et avec duplication de quelques organes abdominaux. En ayant davantage égard aux organes par lesquels se faisait l'adhérence ou la fusion du premier avec le second et le troisième fœtus, et en suivant les travaux de M. Isidore Geoffroy Saint-Hilaire, on pourrait appeler ce monstre iléo-costo-tricéphale. (1)

Explication de la planche 7 B.

Fig. 1. Le monstre iléo-costo-tricéphale vu du dos et représenté sans les têtes, séparées du trone par l'opérateur.

Fig. 2. Le même vu de face et ayant les têtes replacées dans leur position primitive.

(1) Cette application de la nomenclature proposée, en 1830, dans les Annales des sciences naturelles, par M. Isidore Geoffroy, développée depuis par lui dans son Histoire générale des Anomalies, et maintenant adoptée et encore en usage par la plupart des tératologues, n'est
CONSIDÉRATIONS sur l'enseignement de l'histoire naturelle de l'Homme,

Par M. FLOURENS.

Je commence ces Considérations sur un enseignement qui, jusqu'ici, manque aux sciences naturelles, par l'histoire de la chaire que j'occupe au Muséum. On verra cette chaire consacrée, successivement, à l'anatomie humaine, entre les mains de Dionis; à l'anatomie comparée, d'abord entre les mains de Duverney, et, plus tard, entre celles de Vicq-d'Azyr; et l'on comprendra mieux les raisons qui ont dû me porter à la transformer, de nos jours, en une chaire d'anatomie appliquée à l'histoire naturelle de l'homme.

Le Jardin-des-Plantes fut fondé en 1635. Harvey venait de découvrir la circulation du sang en 1619; Aselli les vaisseaux lactés, en 1625; on touchait à la découverte des vaisseaux lymphatiques par Rudbeck et par Bartholin. C'était l'époque marquée pour les grandes découvertes de l'anatomie.

D'ailleurs, ces grandes découvertes étaient combattues. Biolan, le plus célèbre anatomiste de Paris, semblait convenir alors (expressions de Dionis) de la circulation du sang, mais il niait formellement, quelques années plus tard, les point parfaitement rigoureuse. Le principe de cette nomenclature créée: pour les monstres doubles, s'applique de même aux monstres triples et plus complexes encore; mais les noms que l'on obtint pour ceux-ci sont toujours nécessairement plus compliqués, puisqu'ils doivent contenir l'expression au moins d'un fait de plus, la triple, la quadruplicité, etc., au lieu de la duplicité, qui est toujours sous-entendue dans la nomenclature des monstres doubles. Ainsi, les analogues des genres Aiptopage, Dérodyne, Atlodyme, Iniodyme, Opodyme, indiqués par quelques auteurs parmi les monstres triples, sont nécessairement nommés tri-exophoge, tri-dérodyne, tri-atalodyme, tri-iniodyme, tri-opodyme. Dans tous les cas de monstres triple, où les unions sont similaires, c'est-à-dire où l'individu intermédiaire s'unit de la même manière à l'individu droit et à l'individu gauche, cette nomenclature suffit, et chacun de ces noms renferme en lui la définition implicite du genre auquel il s'applique, et auquel seul il peut s'appliquer. Mais, dans d'autres cas, et le monstre triple de MM. Reina et Galvagni, en offre un très remarquable, la nomenclature devint nécessairement un peu plus compliquée, en raison du mode dissimilaire de l'union; en d'autres termes, puisque l'individu médian s'unit d'une manière avec l'individu droit, et d'une autre avec le gauche, dès-lors, il y a deux modes d'union à exprimer, et non plus un seul. Le monstre de MM. Reina et Galvagni, par exemple, correspond, par un seul côté seulement, au genre de monstres doubles, connu sous le nom de Dérodyne, et par l'autre au genre Atlodyme. Il n'est donc ni un tri-dérodyne, ni un tri-atlodyme, mais il devrait être appelé tri-déro-atlodyme, s'il pouvait être nul d'érigé, dès à présent en genre un cas qui n'a encore aucune analogie avec l'histoire de la science.
vaisseaux lymphatiques; et presque tous les vieux anatomistes du temps écrivaient ou pensaient comme Riola. On conçoit donc tout l'intérêt qui devait s'atta-
cher, en 1635, à la création d'une nouvelle chaire d'anatomie.

Cependant cette institution ne produisit pas immédiatement les fruits qu'elle devait donner. Le premier titulaire de la nouvelle chaire, Curieu de la Chambre, auteur de plusieurs ouvrages sur l'homme, sur les passions, sur les affections des animaux, etc., ouvrages qui n'avaient guère d'autre mérite que « d'être écrits, comme le dit Condorcet, d'un style moins inintelligible que celui des écoles », n'était pas même anatomiste.

Son successeur le fut. C'était Dionis. Célèbre à-la-fois comme chirurgien et comme anatomiste, Dionis n'était pas inventeur, mais il a été le plus heureux propagateur des grandes et brillantes découvertes de l'anatomie. Le titre même de ses Leçons, qu'il publia pour la première fois en 1690 et qui eurent bientôt plusieurs éditions, montre qu'il avait compris, avec une singulière sagacité, le but particulier de l'enseignement qui lui était confié. Ce titre est : Anatomie de l'homme suivant la circulation du sang et les nouvelles découvertes; et ces nouvelles découvertes sont, comme je viens de le dire, celle de la circulation du sang faite en 1619, celle des vaisseaux lactés faite en 1625, et celle des vaisseaux lymphatiques faite de 1650 à 1652.

Dionis nous apprend d'ailleurs, en termes formels, que tel avait été le but ex-
pres de la création de la nouvelle chaire : la propagation des découvertes ré-
centes de l'anatomie. « En ordonnant, dit-il, le rétablissement des Démonstra-
tions publiques du Jardin royal (le rétablissement, car ces démonstrations, interrompues pendant plusieurs années, n'avaient été reprises et confiées à Dio-
nis qu'en 1673), le roi (Louis XIV) a voulu que l'anatomie de l'homme y fût démontrée telle que nous la connaissons aujourd'hui. » Et il ajoute que « c'est dans cet établissement (le Jardin royal) que la circulation du sang et les nou-
velles découvertes ont heureusement désabusé la médecine et la chirurgie de ces erreurs dont elles n'osaient presque sortir, et où l'autorité des anciens les avait si long-temps retenues. »

La création d'une chaire d'anatomie au Jardin-des-Plantes est donc pour premier résultat, de répandre les grandes découvertes de l'anatomie. De plus, en faisant sortir l'anatomie du cercle de la Faculté, elle devait nécessairement en avoir un autre; c'était d'appeler cette science à devenir, au Jardin-des-
Plantes, la base de l'histoire naturelle des animaux, comme elle devait devenir, à la Faculté, la base de la médecine et de la chirurgie; et ce second résultat parut dès l'époque même du successeur immédiat de Dionis, c'est-à-dire dès l'é-
poque de Duverney.

Duverney a été, comme chacun sait, l'un des plus grands anatomistes des temps modernes. Avec lui, l'anatomie prit un caractère nouveau, et beaucoup plus approprié à un Muséum d'histoire naturelle. Il la rendit comparée. Son époque fut, d'ailleurs, une des plus belles du Muséum; car, en même temps qu'il y faisait revivre l'anatomie comparée, dont Aristote avait jeté les premières
bases chez les anciens, Tournefort y enseignait la botanique et donnait le premier exemple d'une méthode régulière et générale, en histoire naturelle.

L'époque de Duverney fut aussi une des plus belles pour l'anatomie, prise en général : tandis qu'il fondait l'anatomie comparée sur de nouvelles bases, Ruysch et Malpighi fondèrent l'anatomie fine ou de structure. L'anatomie, alors si profondément cultivée, se partageait : une branche devenait l'anatomie comparée, que devaient successivement agrandir parmi nous Duverney, Vicq-d'Azyr, et finalement Cuyler, auquel l'anatomie a dû son plus grand progrès en ce genre ; l'autre branche devenait l'anatomie de structure ou des tissus, dont Bichat devait former, avec tant d'éclat, un corps particulier et distinct, sous le titre d'anatomie générale.

Fontenelle dit que Duverney avait mis l'anatomie à la mode. Il dit aussi qu'il excellait dans l'anatomie comparée, qui est, ajoute Fontenelle, l'anatomie prise le plus en grand qu'il soit possible. Et ce n'est pas seulement par ses leçons que Duverney concourait ainsi à la renaissance de l'anatomie comparée, il y concourait surtout par ces beaux mémoires sur l'anatomie comparée des animaux, dont il a enrichi, de concert avec le célèbre Claude Perrault, les premiers volumes des Mémoires de l'Académie des Sciences. Quant à ses leçons mêmes, on voit par les fragmens qui nous sont parvenus, que l'anatomie de l'homme en faisait le fond, mais qu'il y répandait, presque partout, de curieux et nombreux développemens sur l'anatomie des animaux.

Duverney occupa la chaire d'anatomie du Jardin royal, pendant près de cinquante ans. Il l'avait trouvée chaire d'anatomie humaine sous Dionis, et il la laissait chaire d'anatomie comparée. Et Dionis et lui avaient également bien compris les besoins successifs et divers des deux époques où ils avaient professé. À l'époque de Dionis, il fallait répandre des vérités nouvelles et combattues ; à l'époque de Duverney ces vérités étaient reçues ; elles étaient enseignées ailleurs et partout ; les besoins avaient donc changé, et le moment était venu de faire, de la chaire d'anatomie du Jardin royal, une chaire particulière et appropriée au lieu où elle se trouvait placée, c'est-à-dire une chaire comparative de l'anatomie de l'homme et de celle des animaux, ou, en un seul mot, une chaire d'anatomie comparée.

Je m'arrêterai peu sur les anatomistes qui succédèrent d'abord à Duverney, parce qu'aucun d'eux ne paraît avoir marqué son enseignement d'un caractère propre. Ces successeurs furent : Humaud, célèbre par un beau mémoire sur le mécanisme des os de la tête ; Winslow, l'anatomiste spécial le plus exact et le plus sûr qui eût paru depuis Vesale ; Ferrein, qui a laissé des recherches originales sur la formation de la voix, et des recherches profondes sur la structure des reins et sur celle du foie; et, enfin, Antoine Petit, auteur d'une édition de l'Anatomie chirurgicale de Patfin, et d'une dissertation sur les naissances tardives, question alors fort agitée, et qui, aujourd'hui même, est loin d'être entièrement résolue.

J'arrive tout de suite à Vicq-d'Azyr. Anatomiste profond, physiologiste ingé-
nieux, écrivain supérieur, Vicq-d'Azyr reprit et perfectionna l'enseignement de Duverney. Il fit plus : on n'avait jusqu'à lui que des observations isolées touchant l'anatomie des animaux ; il conçut et traça le premier le plan comparatif qui devait rassembler ces observations isolées en un corps de science. Et de Vicq-d'Azyr, nous sommes conduits, en ne faisant attention qu'à l'ordre des progrès scientifiques, à M. Cuvier, de qui date l'enseignement spécial et distinct de l'anatomie comparée.

Ainsi, et en ne considérant encore, pour un moment, que l'ordre de ces progrès, on voit l'anatomie, née dans le siècle précédent, des travaux des Vésale, des Fallope, des Eustachi, marquée sa seconde époque, vers le temps qui répond à la fondation du Jardin royal, par les grandes découvertes de la circulation du sang, des vaisseaux lactés ou chyliferes et des vaisseaux lymphatiques. La troisième époque de cette science est celle de Duverney, qui commence l'anatomie comparée, et de Ruyssch et de Malpighi qui commence l'anatomie de structure ; et la quatrième est celle où Vicq-d'Azyr et M. Cuvier fondent définitivement, d'une part, l'anatomie comparée, et où Bichat fonde définitivement, de l'autre, l'anatomie générale.

Mais je reviens à l'histoire particulière de la chaire d'anatomie humaine du Jardin royal. Nous venons de la voir une seconde fois chaire d'anatomie comparée sous Vicq-d'Azyr, comme elle l'avait été, une première, sous Duverney ; et nous touchons à un événement qui devait la modifier encore. Je veux parler de l'organisation nouvelle qui, en 1793, prit forme, si fort toutes les bases du Jardin des-Plantes, et substitua même à ce titre de Jardin-des-Plantes le titre plus général de Muséum d'histoire naturelle.

A cette époque, deux chaires d'anatomie furent établies au Muséum, l'une d'anatomie humaine, et l'autre d'anatomie comparée. La première fut conservée à M. Portal, qui, dans l'ancienne organisation, l'occupait déjà. La seconde fut confiée à Mertrud, de qui elle passa presque aussitôt à M. Cuvier, d'abord comme suppléant, et puis comme titulaire.

On sait quel fut l'éclat des leçons de M. Cuvier. C'est dans ces leçons que chaque organe, pris à part, fut enfin rigoureusement suivi dans toute la série des animaux, et que, pour la première fois, on vit : « rangés sur une même ligne tous ces cerveaux qui, pour me servir des expressions animées de Vicq-d'Azyr, semblent décroître comme l'industrie ; tous ces cœurs dont la structure devient d'autant plus simple qu'il y a moins d'organes à vivifier et à mouvoir » ; et, ce qui ajoutait encore à l'éclat de ces leçons où l'anatomie comparée était, pour la première fois, exposée dans son ensemble, c'étaient les applications brillantes que le professeur y faisait des lois de cette science à la détermination des ossements fossiles, et à la reconstruction de toutes ces espèces perdues que les couches du globe recèlent dans leur sein, et qu'un art nouveau semblait, pour ainsi dire, faire naître et rendre à notre âge.

On conçoit que, à côté d'une chaire d'anatomie comparée, spéciale et distincte, et surtout à côté d'un pareille chaire, remplie par un professeur tel que M. Cu-
vair, la chaire d’anatomie humaine ne pouvait plus se charger aussi d’enseigner l’anatomie comparée, comme elle avait pu, ou plutôt comme elle avait dû le faire sous Duverney et sous Vicq-d’Azyr, quand la chaire d’anatomie comparée proprement dite n’existait pas. Aussi devint-elle, dès ce moment, chaire d’anatomie humaine purement descriptive; et c’est dans cet état que je la trouvai, lorsque j’eus l’honneur de succéder, en 1832, à M. Portal.

Or, l’inconvénient n’était pas moins grand de la laisser plus long-temps chaire d’anatomie humaine purement descriptive que de la transformer une troisième fois encore, et de toutes pièces, en chaire d’anatomie comparée. Ce n’était plus en effet, dans les deux cas, une chaire propre, mais un véritable double emploi, une répétition inutile : dans le premier cas, de la chaire d’anatomie humaine de la Faculté de Médecine, et, dans le second, de la chaire d’anatomie comparée du Muséum d’histoire naturelle. Il fallait évidemment donner à cette chaire une direction nouvelle ; et, quant à ce que devait être cette direction nouvelle, tout l’indiquait.

Le lieu où la chaire était placée, le Muséum d’histoire naturelle, où tous les êtres de la nature ont leur enseignement marqué, et où l’homme seul n’avait pas encore d’enseignement distinct ; la nature de la chaire, qui, de chaire d’anatomie humaine devenait, par une simple modification, chaire d’anatomie appliquée à l’histoire naturelle de l’homme ; et, enfin, l’époque même où nous nous trouvons, époque dont un des besoins les plus profondément sentis est, en effet, de voir combler la lacune qu’offre l’histoire particulière de l’homme, au milieu des progrès rapides de toutes les autres branches de l’histoire naturelle générale.

D’ailleurs, l’étude de l’homme, considéré sous le point de vue de l’histoire naturelle, a une importance propre, et qu’aucune autre branche de cette science ne saurait avoir. Les caractères physiques qui distinguent les races humaines les unes des autres sont peut-être le fait d’histoire naturelle qui, à toutes les époques, a le plus frappé l’imagination des hommes. On sait quel fut l’étonnement des premiers Portugais, qui, pénétrant au quinzième siècle dans l’intérieur de l’Afrique, y trouvèrent des hommes absolument noirs, avec des cheveux crépus, un nez écrasé, des lèvres épaissies. Cet étonnement se renouvela à l’époque de la découverte du Nouveau-Monde. Les historiens racontent que, lors du premier retour de Colomb, les Européens « ne pouvaient détacher leurs yeux des plantes, des animaux inconnus que Colomb avait rapportés, et surtout, disent-ils, des Indiens, si différents de toutes les races d’hommes qu’on eût jamais vues. »

Cependant, malgré cet intérêt si vif qu’inspire et qu’a inspiré de tout temps l’étude physique de l’homme, cette étude est très peu avancée. Et, d’abord, pour ce qui est des anciens, c’est à peine si l’on peut recueillir autre chose sur l’histoire naturelle de l’homme proprement dite, dans Hérodote, dans Strabon, dans Galien même, etc., que quelques opinions erronées touchant la nature et les causes de la couleur des nègres. Le véritable fondateur de cette
science nouvelle est Buffon. Son traité sur les Variétés dans l'espèce humaine est le premier pas important qui ait été fait en ce genre. Mais, faute de caractères anatomiques suffisamment sûrs, Buffon ne parvint pas à la détermination précise de ces variétés; il admit des passages du nègre au blanc; il crut que la chaleur du climat était la seule cause de la couleur noire; et il arriva à cette conclusion, que toutes les différences physiques qui distinguent, actuellement, les variétés de l'espèce humaine n'avaient été, originairement, que l'effet de causes extérieures et accidentelles.

Camper est le premier qui ait cherché des caractères anatomiques précis. Ses observations sur le profil du nègre comparé à celui du blanc, furent un véritable progrès; et M. Blumenbach, le vénérable doyen des naturalistes actuels, fit un pas de plus, en étendant à la conformation entière du crâne et de la face cette étude des caractères précis, que Camper n'avait appliquée encore qu'à la ligne faciale.

D'un autre côté, Malpighi, Albinus, Meckel, Cruikshank, Gautier, etc., en cherchant à déterminer le siège de la couleur des nègres, ouvrirent une voie qui a été beaucoup plus féconde encore, quoique les résultats qu'elle devait donner n'ait été obtenus que tout-à-fait de nos jours, comme on va le voir.

Malpighi soupçonna que cette couche de la peau qu'il appelait le corps ou le réseau muqueux, était le siège de la couleur des noirs. Albinus et Meckel eurent le démontrer. Mais il résulte des nouvelles recherches d'anatomie auxquelles j'ai soumis, dans ces derniers temps, toute la structure de la peau, que Malpighi qu'Albinus, que Meckel, etc., n'avaient que des idées fort confuses sur la nature de ce corps muqueux.

D'abord, ils le supposaient disposé en réseau, et il forme pourtant une lame continue; en second lieu, ils le supposaient surtout dans la peau, et il n'existe réellement que dans les membranes muqueuses; enfin, ils supposaient que ce corps muqueux, blanc dans l'homme de race blanche, noir dans l'homme de race noire, déterminait, par sa couleur seule, la couleur des hommes de ces deux races; et il n'en est rien.

Il y a, dans la peau de l'homme blanc, trois lames on membranes distinctes, le derme et deux épidermes; et dans la peau de l'homme noir, il y a, outre le derme et les deux épidermes; de l'homme blanc, un appareil particulier, appareil qui manque absolument dans l'homme de race blanche, appareil composé de deux lames, et dont la lame la plus externe est le siège du pigmentum ou matière colorante des nègres.

Il y a donc, dans la peau de l'homme de race noire, un appareil qui manque dans la peau de l'homme de race blanche; les deux races, blanche et noire, forment donc deux races essentiellement et spécifiquement distinctes. Et ces deux races sont distinctes non-seulement par un caractère de forme, comme sont les caractères tirés de la conformation du crâne et de la face, elles le sont par un caractère de structure, par un appareil spécial et très compliqué, par un appareil qui existe dans une des deux races et qui manque dans l'autre.
Buffon suppose que la couleur noire n’est que l’effet du climat ; il suppose qu’originalement l’homme nègre a pu être blanc. Toutes ces suppositions tombent devant l’anatomie de la peau, mieux connue. L’effet du climat ne va pas jusqu’à donner ou retrancher un appareil.

A la vérité, l’homme de race blanche peut prendre ce teint basané, noirâtre, qui est le produit du hâle ; mais l’anatomie fait voir que c’est le second épiderme, et non un appareil particulier, distinct, qui est le siège du teint hâlé. D’un autre côté, le mulâtre résulte du croisement des deux races noire et blanche ; et l’appareil pigmental, l’appareil colorant du nègre, se retrouve jusque dans le mulâtre.

La race blanche et la race noire sont donc, je le répète, deux races essentiellement distinctes. Il en est de même de la race rouge ou américaine. L’anatomie découvre sous le second épiderme de l’homme de race rouge, cuivrée, indienne, ou américaine (car on désigne indifféremment cette race par tous ces noms), un appareil pigmental qui est le siège de la couleur rouge ou cuivrée de cette race, comme l’appareil pigmental du nègre est le siège de sa couleur noire.

M. Cuvier dit, de la race américaine : « que, bien qu’elle n’ait pu encore être clairement ramenée ni à l’une ni à l’autre de nos races de l’ancien continent, elle n’a pas néanmoins de caractère à-la-fois précis et constant qui puisse en faire une race particulière ». Et il ajoute que son teint rouge de cuivre n’en est pas un suffisant. Il eût assurément pensé tout le contraire, s’il eût su que ce teint rouge découvrant tenait à un appareil spécial, déterminé, à un appareil que l’anatomie détachait et isolait de toutes les autres parties de la peau.

A considérer, je ne dis pas des caractères de forme, je dis des caractères, des différences de structure, il y a donc trois races spécifiquement et primordialement distinctes : la race blanche ou caucasique, la race nègre ou éthiopique, et la race rouge ou américaine.

Tels sont les résultats que j’ai exposés dans mes leçons du Muséum, pendant ces dernières années. Il est vrai que, faute d’occasions favorables, je n’ai pu étendre encore ces recherches de structure sur les autres races et particulièrement sur celle qui, entre toutes les autres, paraît la plus importante, c’est-à-dire sur la race jaune ou mongole. Dès-lors, j’ai été réduit à des caractères de second ordre, à des caractères de forme, savoir, aux caractères tirés de la conformation du crâne et de la face.

Je dis que ces derniers caractères sont de second ordre ; et par là même s’expliquent les divergences qui règnent parmi les naturalistes touchant la détermination des races humaines, détermination qui, en effet, n’est fondée encore que sur ces caractères. M. Blumenbach fixe le nombre de ces races à cinq : la caucasienne, la mongole, la nègre, l’américaine et la malaie. M. Cuvier réduit ces cinq races de Blumenbach à trois : la blanche ou caucasique, la jaune ou mongolique et la nègre ou éthiopique. Et cependant, il avoue que « ni les Malais ni les Américains ne se laissent clairement ramener ni à l’une ni à
l'autre de ces trois races». Enfin, un auteur plus récent, le savant M. Prichard, porte, et toujours en se réglant d'après la forme des crânes, le nombre des races humaines à sept. Les quatre premières sont : la caucasique, la mongolique, la nègre, et l'américaine (moins les Esquimaux qui forment une tribu à part); la cinquième est celle des Hottentots et des Boschismans; la sixième, celle des Papous ou peuples à cheveux crépus de la Polynésie; et la septième, celle des Alfourous et des Australiens.

Pour nous, en nous en tenant aux seuls crânes authentiques que possède notre Musée, nous croyons pouvoir établir jusqu'à dix formes ou types distincts de têtes humaines : le type caucasique, le mongolique, le nègre, l'américain, le malais ou javanais, le hottentot, le boschisman, le papou, l'alfourou, et le zélandais.

Je rappelle en peu de mots les principaux caractères de ces types.

Le type caucasique se distingue par l'ovale de la tête, la hauteur du crâne, la saillie du front, celle du nez, etc.; le type mongolique, par la saillie latérale des pommettes, la forme carrée du crâne, etc.; le type nègre, par un front comprimé, un nez écrasé, des dents incisives obliques, etc.; le type américain, par le volume de la partie postérieure du crâne, la saillie du nez, la largeur des orbites, etc., etc.

M. Prichard a supprimé, comme nous venons de voir, le type malais; ce type manquait en effet, même dans M. Blumenbach qui l'a établi, de caractères précis. J'ai cru trouver ces caractères sur deux têtes de notre Musée, l'une de Javanais, l'autre de Madurais; deux têtes dont le type est tout-à-fait semblable, et qui, toutes deux, se distinguent par la pronéminence que font en arrière les bosses pariétales très larges, et surtout par la manière dont l'occipital s'aplatis brusquement au-dessous de ces bosses.

Le crâne des Hottentots forme évidemment un type particulier, à côté du type général des nègres; ce crâne est long et étroit; mais il est aussi proportionnellement très élevé; et par là même il se distingue, d'une manière tranchée, du crâne des Boschismans, lequel est, au contraire, singulièrement aplati et comme écrasé de haut en bas.

Les Papous, décrits avec soin par MM. Quoy et Gaimard, et les Alfourous, décrits avec non moins de soin par M. Lesson, sont deux types distincts. Les Papous sont remarquables par l'aplatissement, par la dépression du front et de la face; les Alfourous ont le crâne long et étroit. J'ajoute que, si l'enfoncement que présentent les pariétaux (de chaque côté de la suture sagittale), sur deux têtes de notre Musée venues de la terre de Van-Diemen, se trouvait constant, il suffirait pour indiquer une variété dans le type des Papous.

Enfin, le dernier des types que je propose, le type zélandais, est marqué par la hauteur et l'étroitesse du crâne, surtout en avant, par l'étendue de la fosse temporale, par la saillie antérieure de l'apophyse du menton, etc.

Tous ces types ne sont fondés que sur des caractères secondaires; et par conséquent ils n'ont pas l'importance des trois races primitives, fondées, comme
nous avons vu, sur des caractères de structure. Il suit même, de ce que les caractères qui les constituent ne sont que secondaires, que plusieurs de ces types doivent tenir comme sous-races, soit dans l’une des trois races primitives déjà établies, soit dans quelque autre de ces races qu’il peut rester à établir encore.

Quoi qu’il en soit, je me suis servi dans mes leçons, de ces types, provisoirement admis, pour rapporter à des groupes fixes et déterminés, les observations qui ont été recueillies sur les différents peuples par les naturalistes voyageurs, tels que les Forster, les Bougainville, les Péron, etc., et, plus récemment, les Lesson, les Quoy, les Gaimard, les Garnot, etc.

D’ailleurs, à ces caractères tirés du crâne et de la face, viennent se joindre tous ces autres caractères dont l’ensemble fait la force: la couleur des cheveux, la saillie des lèvres, l’ouverture des yeux, etc., jusqu’à ces habitudes des peuples sauvages, qu’on peut regarder comme primitives, et, par conséquent, comme un effet plus immédiat de l’organisation même de ces peuples. Je ne parle pas ici des caractères tirés des langues, caractères d’un ordre très élevé, mais dont il faut demander le développement à une autre science et à d’autres chaires.

Il s’agit ici de fonder les caractères anatomiques. Je me suis donc proposé dans mes leçons trois principaux objets: le premier, de chercher les caractères anatomiques qui distinguent les races humaines les unes des autres; le second, de suivre les modifications qu’éprouvent ces caractères dans les filiations de ces races, depuis la race primitive jusqu’à la sous-race, et de la sous-race jusque dans les tribus ou familles qui en dérivent; et le troisième, de montrer jusqu’aux lois particulières qui président à la distribution des divers rameaux de l’espèce humaine sur les différents points de la surface du globe.

L’étude de ces trois parties de l’histoire physique de l’homme a fait le sujet de mes leçons pendant ces dernières années. Mais, je ne puis finir cet article sans examiner une question qui est encore aujourd’hui fort controversée. Cette question est celle de savoir si les diverses races humaines forment une seule espèce, ou si, formant diverses espèces, elles constituent ce qu’on appelle en histoire naturelle un genre. Un simple coup-d’œil jeté sur la définition du mot espèce suffira pour faire évanouir, sur ce point, toute difficulté.

Buffon définit l’espèce: «une succession d’individus semblables et qui se reproduisent.» M. Cuvier définit également l’espèce: «la réunion des individus descendus l’un de l’autre ou de parens communs, et de ceux qui leur ressemblent autant qu’ils se ressemblent entre eux.» Or, il est aisé de voir que cette définition, donnée par Buffon et M. Cuvier, est complexe, et qu’elle réunit deux faits très distincts, savoir, le fait de la reproduction ou de la succession, et le fait de la ressemblance.

Ici le fait de la ressemblance est complètement subordonné à celui de la succession; et Buffon et Cuvier en conviennent eux-mêmes, un peu plus tard. «La comparaison de la ressemblance des individus n’est, dit Buffon, qu’une idée accessoire, et souvent indépendante de la première (l’idée de la succession constante par la génération).» «Les différences apparentes des races de nos
« espèces domestiques, dit M. Cuvier, sont plus fortes que celles d’aucune espèce « sauvage d’un même genre. »

D’ailleurs l’appréciation de la ressemblance est toujours plus ou moins mêlée d’arbitraire. Un naturaliste trouve souvent importante une ressemblance qu’un autre naturaliste trouve légère. Le fondement de toute l’histoire naturelle (car le fondement de toute l’histoire naturelle des êtres organisés est la détermination positive des espèces) ne reposera donc que sur une appréciation arbitraire.

L’idée de la ressemblance n’est donc qu’une idée accessoire, comme le dit Buffon. C’est, en d’autres termes, un moyen subsidiaire que les naturalistes emploient à défaut du seul moyen décisif, le fait de la succession ; mais dès que le moyen décisif, le fait de la succession, est connu, le moyen subsidiaire doit être exclu.


PUBLICATIONS NOUVELLES.

Anatomie microscopique, par le D’ L. Mandl. (1)

La première livraison de cet ouvrage traite de la structure intime des muscles et est divisé en deux parties bien distinctes. La première est historique; la seconde contient les recherches propres à l’auteur. M. Mandl passe en revue, dans la première partie, la plupart de travaux de ses prédécesseurs, en commençant par Borelli qui a vu le premier les stries transversales à la surface de faisceaux musculaires, et passant ensuite sur les travaux de Leeuwenhoek, de Heyde, Muys, etc.; il analyse de la sorte les travaux de trente-deux auteurs, dont il reproduit dans quarante-huit figures les dessins originaux; on peut de cette manière saisir d’un coup-d’œil le développement de l’étude microscopique des muscles depuis cent soixante ans.

D’après les recherches de M. Mandl, il y aurait dans le corps animal deux grandes classes de muscles. «La première, dit-il, est celle qui offre à sa surface des stries transversales, parallèles, inombrables; cette classe se trouve continuellement en contact avec les fluides alcalins de l’organisme. La seconde classe n’offre que des fibres longitudinales, placées les unes à côté des autres; elle est exposée à l’influence des liquides acides du corps.

(1) Ouvrage publié en 26 livraisons, accompagné de 52 planches, in-folio, Paris, 1838. Chez J. B. Baillière, rue de l’École-de-Médecine; pour l’Allemagne, chez Heidelof (Extrait communiqué par l’auteur.)
"En effet, si on prend une parcelle d'un des muscles, qui sont exposés à l'influence continuelle du sang, par exemple un muscle des extrémités, et si on l'examine au microscope avec un grossissement de 300 fois environ, on la verra composée des parties cylindriques qui sont transversées par des lignes noires. L'espace qui se trouve entre deux lignes est uniforme et blanc; on peut donc, si l'on veut, l'appeler ligne blanche. La largeur de cette ligne noire et celle de la blanche, varient sur les différents muscles et les divers animaux, mais en général, la dernière se trouve deux fois plus grande que la première. Si on comprime la partie observée fortement à l'aide du compresseur, on verra apparaître le long de cette partie cylindrique des lignes noires parallèlement placées. On verra encore pendant quelque temps les lignes transversales, qui, par la pression continue, finissent par disparaître, de sorte qu'il ne reste que les lignes longitudinales. Si on poursuit, pendant la compression, ces lignes longitudinales noires jusqu'à un bout de la partie observée, alors on se convaincra facilement qu'elles ne sont que les bords des fibres très minces, contenues dans la partie cylindrique.

"Ces fibres très minces, sont les fibres élémentaires, qui, réunies, forment la partie cylindrique, laquelle s'appelle faisceau élémentaire.

"Tous les muscles, au contraire, qui pendant la vie sont exposés à l'action continue des liquides acides, n'offrent rien de semblable aux stries transversales; on ne les voit composés que de fibres élémentaires. Tels sont les muscles de la vessie, de l'estomac, des intestins jusqu'au cæcum."

M. Mandl a trouvé que la sécrétion de l'utérus même est acide, ce qui est d'autant plus remarquable que M. Donné a établi que la sécrétion du col de l'utérus est alcaline. Conformément à cette observation, l'utérus est composé de muscles qui sont tout-à-fait privés des lignes transversales.

"Ces observations, ajoute l'auteur, offraient assez d'intérêt pour qu'une imagination vive les eût expliquées par des effets d'électricité de nature différente. Toutefois, nous avons cru devoir résoudre cette question d'une manière un peu plus positive. En effet, si d'un côté le sang, comme partie alcaline, parcourt des muscles striés, et d'un autre côté, si l'influence alcaline du sang est efficace par les liquides acides plus abondans, ne serait-il pas possible de démontrer cette influence chimique par une expérience directe? Les stries transversales se conserveront-elles mieux dans les alcalis que dans les acides? Nous avons exposé une partie d'un muscle des extrémités à l'influence de l'alcool, des alcalis (potasse, soude, etc.) et des acides (hydrochlorique, acétique, etc.) affaiblis. Après un intervalle de quelques heures, plus ou moins long selon le degré de concentration des réactifs acides, les stries transversales disparaissent à la surface des faisceaux musculaires (résultat qui s'accorde avec ceux obtenus récemment par Ficinus. Ces lignes transversales s'effacent par une forte compression; donc si on opère sur une très petite portion d'un muscle qui lui-même est très mou, on conçoit que, par la seule manœuvre de l'observateur, les lignes transversales peuvent être détruites. Ajoutons à cela que l'état de fraîcheur et la
consistance plus ou moins forte du muscle ont une grande influence sur la persistance de ces stries; alors nous comprendrons dès à présent que cette cause a pu être une source d'erreurs nombreuses pour les observateurs, et de dissentiment sur la structure des muscles plus ou moins moux de différents animaux, de différentes parties du corps, etc.

« Peut-être ces circonstances aideront-elles dans l'explication de la nature des lignes transversales. Tous les anatomistes nous racontent que les muscles sont enveloppés d'une gaine formée par le tissu cellulaire, qui se continue dans l'intérieur des fibres charnues. L'apparition plus ou moins forte de ces stries, selon l'état de leur consistance, et leur destruction par la compression, les acides, etc., devaient nous encourager à chercher la cause de ces lignes dans le tissu cellulaire. Cette idée a déjà été émise par quelques auteurs; mais ils cherchaient la cause des lignes noires dans les plis de cette gaine produits par la contraction; cependant la régularité de ces plis, leur absence sur les muscles des intestins, leur disparition par les acides, et plusieurs autres circonstances semblent contredire cette hypothèse, et notre observation nous porte à adopter une opinion différente. Si on regarde attentivement toutes les différentes parties du muscle sujettes à l'observation, on trouvera bientôt un faisceau qui est encore nuni en partie de stries transversales, mais dont l'autre moitié s'est dissoute en fibres élémentaires. On découvre souvent à côté de ces fibres élémentaires un filament très long, différemment plié et tortillé. De quelle manière ce filament, qui est étranger aux fibres élémentaires, pourrait-il contribuer à la présence des lignes noires? Nous pensons que ce filament est tordu en spirale autour du faisceau élémentaire. Là où les bords de ce filament se touchent, naissent les lignes noires; les intervalles entre les lignes noires ou les lignes blanches sont le filament même. Ce filament est en outre du tissu cellulaire.

« La largeur des lignes blanches est toujours exactement celle des filaments du tissu cellulaire, qui se trouve à côté des muscles. Elle varie avec celle du tissu cellulaire, dans les différentes parties du corps et les différentes classes d'animaux. La dessiccation qui fait entièrement disparaître les fibres élémentaires du tissu cellulaire, efface pareillement les lignes transversales des faisceaux musculaires. Les réactifs chimiques produisent le même effet. Si le tissu cellulaire est plus fort, le muscle offre plus de consistance, les stries persistent davantage.»

«On comprendra maintenant que les stries transversales disparaissent plus vite chez les jeunes individus, par la macération, et dans les muscles des hydropiques. On conçoit aussi la possibilité d’un tel état des muscles sur le cadavre, que toutes les lignes transversales se soient effacées avant que les lignes longitudinales aient encore disparu; les faisceaux présentent alors l'aspect de cylindres longs et jaunes. Dans d'autres cas, au contraire, les deux espèces de lignes sont présentes.

«Les muscles des insectes offrent la trame du tissu cellulaire entourant le faisceau dans un spirale très lâche, de sorte qu'on peut voir dans les intervalles
les fibres élémentaires du faisceau; les tours du filet apparaissent sous forme de bandes entourant le faisceau, et, éloignés les uns des autres. On voit cette disposition très bien sur les muscles des pieds de la mouche.

« Les parties élémentaires des muscles apparaissent rougeâtres sous le microscope, ce qui doit être attribué à la présence de la matière colorante dissoute dans ces organes; car on est bien convaincu, par le grossissement employé, de l’absence des globules de sang. Les jeunes individus sont pourvus de faisceaux élémentaires plus minces que les adultes, mais on trouve aussi chez ces derniers quelques-uns moins épais. Les formes variées des stries transversales sont produites par le changement de la forme cylindrique du faisceau. »


« On ne s’étonnera pas, dit-il, de voir les opinions divisées à l’égard des parties élémentaires du système du cerveau; il ne s’agit cependant en général que d’une structure globuleuse ou tubuleuse. Les auteurs varient sur la forme, la grandeur, les rapports de ces globules. Une substance si délicate que le cerveau devait offrir des formes bien différentes, selon la compression ou division mécanique plus ou moins forte, la macération plus ou moins prolongée, selon qu’elle se trouve à l’état frais ou desséché, etc.

L’auteur passe en revue les travaux scientifiques depuis Malpighi, Borelli, Leeuwenhoek, Du Verney, etc., jusqu’à nos jours. Nous nous arrêterons d’abord sur les travaux des derniers auteurs, en citant d’abord un passage concernant l’aspect extérieur des nerfs.

« Monro, dit l’auteur, a trouvé que les nerfs sont composés de fibres entortillés, et non pas de fibres droites; elles ont environ \( \frac{1}{900} \) de pouce de diamètre, et ne sont pas creuses mais solides. Il dit: « they appear to consist of a « semipellucid substance, in which a more white and opake fibrous looking matter « seems to be disposed in transverse and serpentine lines ». Monro dit qu’il n’existe pas d’auteur qui ait décrit cette structure, soit dans les nerfs, soit dans les tendons où elle se trouve; et que seulement le docteur Smith de Birmingham lui en a parlé. Mais Monro se trompe sur ce point. Non-seulement Molinelli parle déjà de cette disposition, qu’on voit soit à l’œil nu, soit avec un faible grossissement; mais j’ai trouvé encore qu’un auteur bien plus ancien en parle de manière à n’y laisser aucun doute. En effet, Nebel (Miscell. Acad. Nat. Cur. Dec. 3. A. 5 et 6. 1697 et 1698, p. 218) dit, que les nerfs sont composés « ex fibris cincinnatis et serpentine ductu intortis, ut omnes illarum gyri ut « subtilissimi, per tenuia ac membranacea, nervorum tendinumque involucra « transpareant. »

« Tous les observateurs, jusqu’à Ehrenberg, se divisent en deux classes bien différentes par leurs opinions. Les uns, et c’est le plus grand nombre, affirment

X. Zool. — Décembre.
une structure globuleuse; les autres ont signalé des tubes plus ou moins réguliers. Cette opinion aujourd'hui est généralement admise.

« Il n'était pas, en effet, difficile à démontrer que l'état globuleux n'existe pas primitivement dans le cerveau ou dans les nerfs, et que l'opinion de Leeuwenhoek se rapproche beaucoup de la vérité. Le mémoire d'Ehrenberg excite vivement, dans ces dernières années, l'attention et le zèle des micrographes par les observations que nous allons citer. La matière blanche du cerveau, de la moelle, les nerfs de l'ouïe, de la vue et de l'odorat, ainsi que les nerfs sympathiques en partie, sont composés, d'après lui, de tubes transparents qui présentent à des intervalles limités des dilatations sphéroïdes ou globuleuses (varicosités), ce qui les fait ressembler aux grains d'un coller qui ne se touchent pas, et qui communiquent entre eux par un canal; c'est ce qu'il appelle les tubes variœux ou articulés. Naturellement, leurs directions sont parallèles; mais ils sont souvent déplacés par la mauvaise de l'observateur. Il existe, en outre, dans ces tubes une cavité interne qui contient une matière particulièbre, parfaitement transparente, sans aucune trace de globules, à laquelle Ehrenberg donne le nom de fluide nerveux (nervosus liquor). Leur diamètre varie entre $\frac{1}{60}$ à $\frac{1}{300}$ d'une ligne; si on les déchire, leur extrémité libre se retire, et on n'en voit sortir aucun fluide. On les trouve plus forts près de la base du cerveau et aux environs des ventricules, et au milieu d'eux quelques-uns isolés et plus gros. Il est souvent possible de reconnaître distinctement dans ces derniers, à côté des bords extérieurs de leurs parois, deux lignes intérieures marquées plus faiblement qui limitent l'étiendue du diamètre de la cavité. Si ces tubes articulés sont déclinés, alors ils forment des petites vessies, globules, etc., à doubles lignes; et ce sont ces parties qui, d'après Ehrenberg, étaient déclarées par Leeuwenhoek être des globules de graisse. Plus on se rapproche de la périphérie du cerveau, plus les tubes diminuent de diamètre; de sorte que, dans la matière griseâtre, ils ne forment qu'une masse granuleuse, composée de grains extrêmement fins qui sont mieux au moyen de fils très minces. Parmi ces fibres, ainsi qu'à la surface de la rétine, se trouvent des grains plus gros; ils paraissent formés de petites granulations, et servent peut-être à la nourriture des nerfs qui, par leurs bouts blancs, pourraient absorber. Nous renvoyons le lecteur, pour l'explication de ces globules, à nos mémoires sur le sang, où nous démontrons qu'ils sont des globules de la fibrine coagulée, et qui se trouvent partout où il y a du sang épanché. Les tubes articulés transparents que nous venons de signaler dans la substance blanche du cerveau et dans quelques nerfs, paraissent former la partie la plus importante du système nerveux, et semblent destinés à la sensation.

« Les nerfs du mouvement sont bien différents. Ils sont composés de tubes droits et uniformes, sans dilatation, plus gros en général que les tubes articulés, mais dont ils sont la continuation: Ehrenberg les appelle tubes cylindriques. Ils contiennent dans leur intérieur une matière peu transparente, blanche, visqueuse, qu'on peut faire sortir des tubes sous forme de grumeaux, et qui est appelée la matière médullaire. Leur cavité est en général plus grande que celle
de tubes articulés, et se voit bien à cause de la ligne interne parallèle aux bords ; on voit même l'ouverture du tube. Leur diamètre varie entre \( \frac{1}{16} \) et \( \frac{1}{10} \) d'une ligne ; il est chez les vertébrés de \( \frac{1}{15} \) à \( \frac{1}{14} \). De pareils tubes cylindriques se trouvent dans tous les troncs des nerfs et dans le sympathique. Dans les ganglions des oiseaux et quelques autres animaux, se trouvent, en outre, des corps très grands, globuleux, irréguliers, dont le diamètre est presque \( \frac{1}{5} \) d'une ligne. Il y a continuité entre les tubes articulés du cerveau et les tubes cylindriques des nerfs ; en sortant du cerveau, les tubes commencent à être remplis de la matière médullaire, et quittent peu-à-peu la forme articulée.

« Krause prétend que le cerveau est formé de fibres solides, qui sont composées d'une masse soluble dans l'eau, et de globules blancs, sphériques, du diamètre de \( \frac{1}{100} \) ligne de Paris. D'après Berres, la plupart des tubes nerveux du cerveau ont la forme dentritique, et on voit de petites vésicules sur leurs ramifications. Il croit, en outre, pouvoir établir des formes nerveuses avec vésicules superposées ; les tubes cylindriques avec les parois distinctes se trouvent dans les muscles; les nerfs de l'extension sont munis de vésicules....

« Treviranus nia le premier la réalité ou persistante de la forme articulée dans les tubes du cerveau, qui ne serait d'après lui qu'accidentelle et produite après la mort. L'air et l'eau produisent aussi des changemens dans la forme des tubes. Il voyait des tubes articulés dans les nerfs, et admettait, en outre, dans la substance corticale, des tubes plus forts que ceux désignés par Ehrenberg.

« La grande facilité qu'ont les tubes à changer de forme, l'impossibilité de tracer des limites bien distinctes entre les tubes cylindriques et variiqueux, le nombre plus grand de ces derniers dans les jeunes animaux; tout cela a paru confirmer l'idée de Treviranus. Weber se range maintenant aussi à cette opinion; mais il croit les varicosités produites par l'eau et par la pression; il propose d'observer les nerfs en les mouillant avec de l'alumine.

« Valentin, dans les recherches qu'il avait faites en partie avec Purkinje, s'est beaucoup occupé de la distribution des globes ou corps en forme de mas-sues dans le système nerveux. Voici les principaux résultats de son mémoire: Tout le système nerveux est composé de deux masses primitives: des fibres primitives isolées, et de globes isolés qui forment la couche (Belegungsmasse). Ces deux formes se trouvent également dans le système nerveux central et périphérique; il n'y a pas de transition entre elles. La masse, rouge-grisâtre du cerveau et de la moelle, est composée seulement de globes; cette formation est appelée la couche continue (reine continuirliche Belegungsformation). La couche qui est formée de globes mêlés aux fibres primitives, constitue la couche interstitielle. Si les fibres primitives se trouvent toutes parallèlement les unes à côté des autres, elles constituent la formation des nerfs (nervenformation). Si au contraire ce parallélisme est détruit, cette forme est appelée par Valentin formation de plexus (plexusformation).

« Les tubes ainsi que les globes sont entourés des gaines, dont l'épaisseur varie
dans les différentes parties du système nerveux ; mais elles sont toujours com-
posées du tissu cellulaire.

« La forme des globes varie beaucoup ; elle est plus ou moins ronde ou allongée, arrondie d’un côté ou terminée en queue de l’autre. Mais ils sont toujours formés d’un parenchyme granuleux, qui se trouve traversé d’une masse semi- 
fluide, tenace, transparente, de la nature du tissu cellulaire. Il se trouve au milieu un nucleus roud ou allongé, qui est tout-à-fait transparent. On observe au milieu de la surface de ce nucleus un corpuscule isolé, plus ou moins rond. 

« La substance de fibres primitives est partout une substance transparente, oléiforme, un peu ténace, qui fait voir, à cause de la réfraction de la lumière dans l’état isolé, une ligne très fine parallèle aux bords. Le contenu et la gaine sont encore unis. Si cette substance se trouve isolée, elle devient globuleuse, ou au moins son diamètre transversal s’élargit.

« Il n’est guère nécessaire d’ajouter qu’on trouve encore dans le cerveau, outre les parties énumérées, des vaisseaux, du tissu cellulaire, de la matière colorante, de la graisse et quelques parties anorganiques.

« La partie périphérique du système nerveux est, comme celle du centre, composée des mêmes masses primitives. Les globes ne sont que des formations interstitielles, et Valentin propose donc d’appeler à l’avenir le système ganglionnaire la couche périphérique interstitielle. Les globes se trouvent plus ou moins isolés, et les fibres primitives traversent directement les ganglions, ou elles entourent les globes. Il s’ensuit, d’après notre auteur, qu’il n’existe ni un système nerveux organique proprement dit, ni des nerfs organiques ; mais que la formation interstitielle peut trouver place parmi les fibres primitives des nerfs périphériques. Le nerf sympathique même n’est autre chose qu’un nerf composé presque dans tout son trajet de globes (la formation interstitielle). La partie centrale, le cerveau et la moelle épinière, ne sont composés que de ces deux masses primitives que nous connaissons déjà ; il n’y a jamais lieu à aucune transition parmi ces éléments ; mais ils sont rangés les uns à côté des autres. Toutes les variations possibles ne tirent leur origine que des rapports, des différentes positions relatives qu’affectent les parties élémentaires ; au point où les substances blanche et grise se touchent, les globes de la substance grise se trouvent entre les fibres. Le nombre de ces globes détermine la couleur du cerveau. Toutes les fibres qui entrent dans la moelle se dirigent d’abord vers le centre ; elles entourent ensuite les globes, et continuent après leur direction vers le cerveau.

« Les gaines des nerfs et des globes sont beaucoup plus épaisses dans les parties périphériques que dans le centre. Elles deviennent extrêmement minces, sirot que les nerfs entrent dans le cerveau ; et c’est là qu’elles peuvent être détruites de la manière la plus facile ; elles deviennent alors variéuses par la pression. »

M. Mandl donne ensuite l’extrait du travail de Burdach, que les lecteurs
des Annales des Sciences naturelles connaissent déjà, et parle enfin du mémoire de Remak (observationes de systematis nervosi structura. Berolini, 1838.), qui contient les résultats suivants. « Les tuyaux primitifs des nerfs renferment dans leur intérieur; d’après cet auteur, non pas une masse liquide ou huileuse, mais un véritable fil, une espèce de ruban (fibra), très transparent et assez solide pour résister à la pression plus long-temps que le tuyau lui-même, et qui, strié à sa surface, paraît composé en outre de plusieurs fils élémentaires, parallèles, qui ont des noyaux latéraux. Ce tuyau, c’est-à-dire l’enveloppe externe du fil, perd bientôt son aspect naturel par les agents physiques; il devient plus ou moins âpre à sa surface; ce qui produit la forme d’une masse intérieure couglue. D’autres fois ce tuyau se contracte de manière à produire des varicosités plus ou moins régulières; la cause de ce phénomène n’est pas encore connue. Retzius, Müller, Warrentrap, Gilray avaient déjà démontré la présence de fibres grisâtres au milieu des nerfs du système cérébro-spinal; Valentin avait attribué la cause de cette couleur, ainsi que celle de la couleur jaune dans le cerveau, au nombre des globes. Remak au contraire a découvert des fibres d’une nature toute différente, qui n’ont pas d’enveloppe, qui sont très transparentes, presque gélatineuses, et offrent presque toujours à leur surface des lignes longitudinales. Elles se séparent facilement en fibres encore beaucoup plus minces, qui présentent en différences endroits de leur trajet de petits nœuds latéraux ovales et plus ou moins couverts de corpuscules vonds, rarement irréguliers, de la grandeur des nucleus des globes que nous connaissions déjà; ils ont quelquefois des noyaux. Ces fibres, appelées organiques, se trouvent dans tous les nerfs, et principalement dans le sympathique. Müller propose, dans sa physiologie, d’examiner la partie carotique du nerf sympathique du veau, pour se convaincre facilement de cette structure. Cette partie est presque entièrement composée de fibres organiques. Ces fibres organiques prennent leur origine sur les globes, qui se trouvent dans le système ganglionnaire, et dans la substance grise du cerveau et de la moelle, que nous connaissions par les travaux d’Ehrenberg et de Valentin. Rolando a décrit dans la moelle épineure une substance particulière qu’il appelle substance gélatineuse. Notre auteur a trouvé dans cette substance des corpuscules semblables aux noyaux des globes; ils contiennent un noyau central à leur surface, et sont transparents. La partie inférieure de la moelle est presque entièrement composée de substance gélatineuse; elle renferme beaucoup de ces corpuscules, qui ont quelquefois deux ou trois noyaux, et quelquefois pas du tout. La substance blanche du cerveau et de la moelle est composé, ainsi que les nerfs, de tuyaux, qui contiennent le ruban interne, et qui sont beaucoup plus délicats dans le cerveau que dans la moelle. Il en existe dans la couche grisâtre, de sorte que la couche purement globulense du Valentin n’est pas admise. »

M. Mandl a appris dernièrement par M. Müller que Purkinje est arrivé à faire sortir le fil interne, qui se trouve dans les tuyaux des fibres primitives des nerfs, en faisant subir à ces derniers une certaine préparation.

« Qu’on jette maintenant (ajoute M. Mandl) un coup-d’œil sur les travaux
374 A. DUGÈS. — Physiologie de l'homme et des animaux.

dont nous avons pris connaissance dans ce chapitre, et on verra que la forme globuleuse, décrite d'abord comme forme élémentaire du système nerveux, fut bientôt abandonnée par les auteurs, et qu'on suivit long-temps l'opinion de ceux qui admettaient une structure tubuleuse. Celle-ci, repoussée d'abord notre siècle par les auteurs qui croyaient voir dans les globules, les parties élémentaires des nerfs et du cerveau, est rétablie par les travaux des dernières années. Mais la forme de ces tubes et leur contenu solide ou fluide est encore un point de dissentiment entre les observateurs, et je me propose d'examiner dans la seconde partie de ce mémoire à quoi peuvent tenir les causes de ces différences.

Traité de physiologie comparée de l'homme et des animaux ;
par Ant. DUGÈS, correspondant de l'Académie des Sciences,
professeur à la Faculté de médecine de Montpellier.

Les lecteurs des Annales ont eu souvent l'occasion d'apprécier le talent d'observation qui distinguait un si haut degré l'auteur de ce livre, et tous les amis de la science doivent vivement regretter sa mort récente, car on pouvait espérer que pendant long-temps encore, il continuerait à poursuivre les travaux de recherches qui déjà l'avaient conduits à des découvertes si intéressantes. Son dernier ouvrage, dédié au doyen des zoologistes français, M. Geoffroy Saint-Hilaire, est le Traité de physiologie comparée, dont le premier volume a été imprimé sous les yeux de l'auteur, et dont le reste du manuscrit, entièrement terminé, est déjà en grande partie publiée par les soins d'un de ses amis. Il a déjà paru deux volumes de cet ouvrage intéressant; le premier est consacré aux considérations générales sur la vie et à l'étude des sensations que l'auteur divise en externes, internes et centrales; le second comprend les fonctions de manifestations (électricité animale, phosphorescence, chaleur animale, mouvements) et les fonctions de nutrition, considérées dans toute la série zoologique. Il n'est guère de ces articles où, à côté de l'analyse rapide des travaux de ses prédécesseurs, l'auteur ne présente quelques vues nouvelles et souvent il y a consigné des faits entièrement neufs tiré de ses propres recherches. Pour donner une idée de la manière dont Dugès a traité son sujet, nous rapporterons ce qu'il dit de la circulation chez les Myriapodes, les Insectes et les Arachnides.

« Myriapodes. Ici le sang est inodore comme dans les insectes, et, comme chez eux les organes respiratoires se répandant partout, simplifient la circulation sans l'annihiler toutefois; malgré l'axiome de Cuvier, que là où l'air va chercher le sang, le sang n'a pas besoin d'aller chercher l'air, Tout récemment Tyrrel dit avoir observé la circulation chez les lithobies et les géophiles. Il y a long-temps que nous en avions décrit les organes d'après la Scolependre mordante; ils consistent en un vaisseau dorsal étranglé à chaque articulation, et fournissant là, de chaque côté, une branche transversale entourée de graisses comme lui. Ce vaisseau dorsal se bifurque à peu de distance de la tête, de manière
embrasser l'oesophage et à former au-dessous, par une nouvelle anastomose, une aorte rétrograde qui se colle sur le cordon nerveux central, et en suit le trajet dans toute la longueur du corps, fournissant en plusieurs endroits bien manifestement des rameaux latéraux; c'est toujours vis-à-vis d'un ganglion, et les branches vasculaires accompagnent les nerfs qui partent de ces centres nerveux. Du milieu de la bifurcation du vaisseau dorsal part aussi une artère céphalique, et des croises latérales partent d'autres branches antérieures assez volumineuses. L'analogie doit nous porter à croire que les branches transplantées du vaisseau dorsal sont des veines afferentes et que celles du vaisseau ventral sont des rameaux artificiels, ce que nous avons vu chez les Annelides l'indique assez, et ce que nous allons voir chez les insectes le prouvera encore, puisque ces derniers ne diffèrent des Myriapodes que par l'absence des veines; ce qui n'empêche pas la circulation d'être toute aussi complète.

Les Insectes: Malpighi, Swammerdam, Lyonnet, connaissaient à merveille le vaisseau dorsal ou cœur des insectes, et les battements semblables à ceux du noire ne leur avaient point échappé; ils sont effectivement visibles même à travers la peau de certaines larves, des chenilles rases et des vers blancs (larves de coléoptères, et de diptères); on les voit au microscope dans le corps de plusieurs insectes purs, demi transparents, la puce en particulier. N'ayant pu, même à l'aide d'injections, y découvrir des productions vasculaires, d'autres anatomistes n'ont plus voulu y voir, tout au plus, qu'un inutile rudiment de cœur ou un organe sécréteur (Cuvier, Marcel de Serres, Léon Dufour). Cette opinion si contradictoire à l'analogie d'après ce qu'on voit chez les Arachnides, les Crustacés, les Annelides, tombe aujourd'hui devant des faits positifs. Une anatomie plus minutieuse, une inspection plus attentive, ont appris que cette espèce de boyaux, qui règne longitudinalement du côté opposé au système nerveux est non-seulement partagé en loges, dont le nombre est à peu-près égal à celui des anéaux abdominaux, comme autant de petits cœurs particuliers (Malpighi), et que ces loges communiquant entre elles, poussent successivement de l'antérieur le flûde circulatoire, dans un sens antéro-postérieur; mais encore qu'à chaque jonction le renflement postérieur semble s'enfoncer un peu dans l'antérieur, mais qu'il reste deux bontaillères latérales, dont les bords saillants en avant et en dedans sont valvule, et permettent au liquide épanché dans la cavité générale du corps de pénétrer dans le vaisseau dorsal d'arrière en avant, et non d'en sortir ainsi (Strauss, Wagner, Carus). Nous avons reconnu cette disposition, sans dissection, de la manière la plus manifeste, dans les larves aquatiques dont il sera question tout-à-l'heure, du moins pour les deux derniers renflements. En avant, le vaisseau dorsal ou cœur s'amincit, devient uniformément cylindrique, étroit dans le thorax; s'avance vers la tête, et se perd sur l'oesophage d'une manière assez brusque pour avoir fait croire à Strauss qu'il s'ouvrait dans sa cavité. Des recherches attentives nous ont appris, et ont appris à Wagner, à Audouin, à Müller, que chez des phalènes, des orthoptères, des hyménoptères, le vaisseau terminal donne, dans le thorax, des branches inférieures et rétrogrades qu'en
peut suivre jusqu'aux ovaries. Peut-être en émane-t-il bien d'autres que l'on ne peut voir à cause de leur ténuité, de leur transparence, qui les cache au milieu des fibrilles musculaires dont le cœur est environné; mais leur existence n'étant pas rejetée, il n'en reste pas moins aux insectes un cœur et une aorte à branches peu distinctes.

« Il y a donc là un moteur central qui suppose un mouvement circulaire des liquides, et nous allons voir que ce mouvement est réel : disons seulement que la contractilité de ce cœur est très grande, qu'il se resserre fortement, sans doute en raison d'une texture fibrillaire qui devient plus évidente chez les Myriapodes, et qu'il y a conséquemment en lui quelque chose de plus qu'une dilatation produite par un faisceau musculaire transverse qui s'y attachent latéralement, et que Lyonnet a nommé ses ailes : de là des systoles et diastoles successives, mais à la vérité peu régulières.

« C'est à Carus qu'on doit la démonstration positive d'un circulation complète chez les insectes. Les larves de libellules, d'agriion, d'éphémère surtout, très jeunes et très transparentes, permettent d'étudier sans équivoque, et avec un microscope même médiocre, les phénomènes suivants :

« Le sang incolore, mais reconnaissable à ses globules petits, irrégulièrement ovaux, marche en courant assez rapide et par secousses isochrones aux contractions du cœur. Dans cet organe, il marche d'arrière en avant, et on l'y voit entrer par les fentes ou boutonnières dont il a été question ; on ne distingue pas aussi bien comment il en sort; mais il est facile de reconnaître, du côté inférieur du corps, un large courant subdivisé par les replis des diverses parties du tube digestif, et dirigé d'avant en arrière, c'est-à-dire en sens inverse du précédent. De ce courant général en émanent d'autres plus étroits; on voit les globules passer à la file dans la hanche et la cuisse de chaque patte, changer de direction à l'insertion de la jambe, pour revenir dans le courant général, de même on voit des séries de globules marchant en sens opposé dans les filets caudaux, dans les rudiments d'ailes, etc.

« En est-il de même dans les autres insectes ? L'observation semblerait démontrer le contraire, mais tout porte à croire que cela tient, ou à la transparence trop complète du globule, ou à la lenteur excessive des courants. J'ai vu, en effet, dans une larve de dystique sortant de l'œuf, les courants abdominaux se manifester très nettement mais avec une lenteur extrême, quoique le cœur se contractât avec vivacité. Cette différence n'étonnera pas quand on saura que, de même, dans les jambes et les tarses des larves d'éphémères, on peut voir circuler des globules, mais rares et lents dans leur marche qui est au contraire si rapide dans les cuisses. Au reste, nous avons vérifié aussi, d'après Carus, qu'il y a une circulation bien visible quoique lente, dans les nervures et le réseau intermédiaire des élytres du Lampyris splendidus. Il y avait parfois d'assez longs repos, et peut-être est-ce pour une raison semblable que nous n'avons rien aperçu dans les ailes des hémérobes et des mouches, où Tyrrel dit les avoir observés aussi bien que chez d'autres névroptères.
A. DUGÈS. — Physiologie de l’homme et des animaux. 377

« Nous avons été plus heureux dans la vérification des observations de Beln : comme lui nous avons remarqué dans les jambes du notonecte et de la nèpe, des pulsations régulières, et que nous ne saurions confondre avec des crises pations irrégulières de muscles, ainsi que l’a pensé notre savant ami L. Du
four. De même aussi, eu choisissant une larve de nèpe très petite et très trans-
parente, nous avons aperçu parallèlement au vaisseau dorsal, les deux courans latéraux dirigés d’avant en arrière et déjà signalés par Wagner, et dans les pattes une double série de globules très allongés et marchant à la file jusqu’au bout du

tarse. Il nous a donc paru qu’il y avait, dans chaque jambe, une sorte de val-
vule motrice, servant à compléter la circulation dans les membres où elle s’o-
père si difficilement, comme nous l’avons dit ci-dessus. Ces organes pourraient
être comparés aux cœurs lymphatiques que nous trouvons chez les vertébrés.

D’ailleurs, la rapidité avec laquelle les blessures faites par les crochets d’une arai-
guée tuent même d’assez gros insectes, ne prouve-t-elle pas la réalité d’une circula-
tion qui répand rapidement le venin avec le fluide nutritif ? Trouverait-on sur-
prenant que le sang marchât ainsi en courans dans des interstices et sans parois
vasculaires ? Qu’on se rappelle ce que nous avons dit du Chara et des végétaux
en général : nous verrons ailleurs de exemplaires bien plus saillants de cette
marche indépendante et comme spontanée des globules sous l’influence de la
vie ; nous les verrons cheminer même à travers des substances pulpeuses, s’y
tracer une route et organiser les vaisseaux destinés par la suite à les conduire ;
souvent, il est vrai, il y aura du moins pour eux un centre d’impulsion. Il existe
egalement ici, et les pulsations du vaisseau dorsal doivent être considérées, sinon
comme la force qui pousse, du moins comme le balancier qui régularise et met
en jeu les mouvements de tout le système.

« D. Arachnides. On a publié si peu de chose sur ce sujet, qu’on nous par-
donnera d’y insister avec quelques détails anatomiques. Nous ne dirons rien
des Arachnides trachéennes, chez qui tout doit se passer à-peu-près comme
chez les insectes. Quant aux pulmonés, voici d’abord ce que j’ai vu sur le Scor-
pion d’Europe. Dans l’abdomen, le cœur est très allongé et divisé au moins par
quatre étranglements, chacun desquels donne latéralement et en dessous de
deux paires de branches principales, qui s’enfoncent dans les viscères, et dont une
paire semble destinée aux poumons du segment, auquel elles répondent. En
avant, le cœur donne d’autres branches latérales, s’abaîse vers l’estomac, s’y
accolle, et, derrière le cerveau, se divise en grosses branches, qui se distribuent
vraisemblablement dans les pattes, et certainement en partie dans les organes
de la mastication. Très probablement, c’est parmi les vaisseaux abdominaux que
Müller, dont je n’ai pas le travail en ce moment sous les yeux, en a vu se jeter
sur le canal alimentaire, pour en recevoir la substance nutritive. Ce que nous
dirons plus bas des Araneides pourra servir à rendre raison des dispositions que
nous venons d’indiquer.

« Du reste, ce cœur contient un sang incolore, à globules gros, assez rares,
peu réguliers et granuleux (Wagner). Celui des Araignées m’a offert des globules
aussi peu nombreux, assez réguliers, aplatis et ovales, granulés et assez grands pour offrir en, diamètre la dixième partie de l'épaisseur d'une patte chez une Araignée récemment éclose.

« Le cœur des Aranéides est fusiforme et placé au dos de l'abdomen, où il se montre souvent à travers la peau, de manière à laisser voir ses contractions, qui m'ont paru fort lentes et fort irrégulières chez certaines espèces, fréquentes et régulières chez les Phalens, dont la peau est très diaphane. On voit aussi aisément, chez toutes les Araignées à peau lisse, les Épéries, par exemple, des vaisseaux superficiels qui en partent. L'Épérie cornue de Walkenaer m'a merveilleusement servi sous ce rapport. Son épiderme, demi transparente, laisse voir, non-seulement les gros vaisseaux qui terminent le cœur en arrière, mais encore, une innombrable multitude d'autres qui en partent latéralement, jusqu'au- près du pédicule de l'abdomen, et seignent de tous côtés cette partie ; en lui faisant une sorte d'enveloppe vasculaire située dans l'épaisseur de la peau. Ces vaisseaux parallèles, transverses ou obliques, se recoupent tous en avant, à la partie inférieure du ventre. Leurs ramifications, semblent là s'élargir et se jeter vers les poumons. Je soupçonne qu'ils se résolvent en une grande lacune paral- lèle aux muscles inférieurs de l'abdomen, et projettent ainsi le superfli du sang dans les plus membranées de la poche respiratoire ; ce sont donc des artères en grande partie pulmonaires, mais dont quelques rameaux sans doute pénètrent profondément dans les viscères abdominaux. L'excès de ténuité de leurs parois, leur facile aplatissement les annihilent, pour ainsi dire, après la mort ; et empêcheront toujours de les découvrir par la dissection ; aussi ne les ai-je pas même pu reconnaître sur la Mygale aviculaire.

« La dissection du cœur dans les grandes espèces apprend qu'il est très muscu- leux et que sa cavité intérieure offre plusieurs étreglements, formés par des plis transverses, en forme de valvules incomplètes. Dans le cœur de la Mygale aviculaire, j'ai pu m'assurer que les plis sont hilatiés, formés par un double faisceau musculaire, et que, entre leurs lèvres, s'ouvrent des troncs vasculaires qui viennent des poumons, à travers de profondes scissures du foie, et d'autres qui s'élèvent de la profondeur même de ce dernier viscère, et semblent venir de l'appareil digestif. Ce sont donc des veines mésentériques et pulmonaires. Celles-ci sont même au nombre de deux pour chaque poumon, dans la Mygale avicu- laire, une plus superficielle, une plus profonde : elles m'ont paru s'élargir en entonnoir plutôt que se diviser à l'approche du poumon ; la superficielle tiendrait-elle lieu du grand lacis de l'Épérie cornue ? Quoi qu'il en soit, tous ces gros troncs sont certainement des vaisseaux afférents ; car, dans les contractions du cœur, leurs lèvres musculées doivent former l'orifice, comme cela arrive aux troncs branchiaux des Crustacés. De là vient que, en injectant dans le cœur une sub- stance colorée, je n'ai que très rarement réussi à la faire parvenir aux poumons ; ce qui n'est arrivé cependant : ils ont alors pris une rougeur diffuse, qui n'indiquait point la présence de capillaires ramifiés.

« Lors de la systole du cœur, le sang doit donc passer en totalité où dans les
artères superficielles déjà mentionnées, ou dans une aorte dont il nous reste à parler. Le cœur se continue en avant, sous forme d'une grosse artère, qui traverse le pédicule et entre dans le corselet; je l'ai suivie jusqu'au milieu de cette partie, où je l'ai vue s'élargir, sans doute pour se diviser. En effet, je suis certain qu'il y a des artères dans les pattes. J'ai vu, sur de très jeunes Araignées de diverses espèces ou sur des espèces adultes et à membres transparens (phœœus), les globules du sang marcher à la file sur une ligne étroite, constamment limitée par des parois membraneuses, depuis l'origine jusqu'à l'extrémité de ces membranes. Leur marche était saccadée comme les battements du cœur, et bien plus rapide qu'au retour. Ce retour d'ailleurs s'opérait sur un trajet large, irrégulier, et la marche de plusieurs globules était entravée par les muscles, etc. Donc il n'y a point de veines; donc le sang revient dans les interstices des organes, et sans doute va se jeter, aussi vers les poumons, après avoir traversé, le long des muscles et du cordon nerveux, le pédicule du corps.»

Nous ajouterons encore que chaque volume est accompagné de quelques planches, représentant au trait les principales formes des organes décrits dans le texte; et que l'éditeur annonce la prochaine publication du troisième et dernier volume de ce traité.

The zoology, etc. — Voyage du Beagle, exécuté de 1832 à 1836, sous le commandement du capitaine Fitzroy. — Partie zoologique par M. Darwin.

La publication de ce voyage intéressant se poursuit avec activité. Nous avons déjà fait connaître à nos lecteurs le mémoire de M. Owen sur le TAxodon (1); inséré dans la première livraison, et, depuis lors, il a paru trois cahiers consacrés à la description des Mammifères actuels, et un cahier contenant la description des Oiseaux.

Dans une courte introduction à l'histoire des mammifères recueillis pendant son voyage, M. Darwin présente quelques considérations géographiques et météorologiques sur les contrées dont il a exploré la faune; mais la description des espèce est due à M. Waterhouse et est accompagnée de très belles planches. Les trois livraisons que nous avons sous les yeux contiennent la description de cinq espèces nouvelles de Chauve-souris (Desmodus Dorbignyi, Phyllostoma Greci, Phyllostoma perspicillatum, Vespertilio chilensis, Dysops nasutus); des observations nouvelles sur le Canis antarcticus de Shaw, le Canis magallanicus, de Gray; le Canis fulvipes de Martin; le Canis Asaruæ du prince Maximilien; le Felis yagourroundi de Desmarest; le Felis pajeros Desm.; le Felis domestica; le Galictis vittata et le Lutræ chilensæ de Bennet; la description d'une nouvelle espèce de Loutre (L. platensis) et un Dauphin (le Delphinus Fitzroyi), des détails sur le Guanaco et le Cervus campestris F. Cuv.; mais c'est surtout l'ordre des Rongeurs qui a fourni à M. Darwin une

(1) V. Ann. des Sc. nat. 1. ix.
Histoire naturelle des insectes Orthoptères, par M. Audinet-Serville. 1 vol. in-8° avec planches.

Cet ouvrage fait partie de la collection des traités d'histoire naturelle publiés par Roret, sous le nom de nouvelles suites à Buffon, et contient la description détaillée d'un grand nombre d'espèces nouvelles: il ne pourra manquer d'intéresser vivement les entomologistes; mais nous regrettons de ne pas y trouver plus de renseignements sur l'anatomie et la physiologie des insectes à l'étude desquels il est consacré.


En exposant les diverses opinions des zoologistes sur la nature et le mode de croissance des Polypiers, j'ai omis de citer M. Meyen, dont je n'avais pas le travail sous les yeux au moment où je rédigais ma note; mais je crois devoir me hâter de réparer cet onblé; car, en étudiant avec plus d'attention que je ne l'avais encore fait les écrits de ce savant voyageur, je viens de m'apercevoir que sur quelques points il m'a devancé. Effectivement ses observations sur les Sertulaires, publiées dans les mémoires de l'Académie des Curieux de la nature de Bonn, en 1834 (Supplément du tome xvi), l'ont conduit à penser que la gaine solide ou polypier de ces Zoophytes n'est pas une matière inorganique, mais doit être comparée à l'épiderme des plantes. J'aurais par conséquent pu m'appuyer sur cette conclusion particulière dans la discussion générale à laquelle je me suis livré; mais c'est surtout pour rendre à M. Meyen ce qui lui est dû, que je m'empresse de revenir sur ce sujet.
# TABLE DES MATIÈRES

CONTENUES DANS CE VOLUME.

ANATOMIE ET PHYSIOLOGIE.

- Nouvelles observations sur le parallèle des extrémités dans l'homme et les quadrupèdes, par M. Florense. .................................................. 35
- Recherches sur la présence de l'urée dans les différentes parties du corps des animaux autres que l'urine, par M. R. P. Marchand. .................................................................................. 46
- Recherches sur différentes pièces du squelette des animaux vertébrés, encore peu connues, et sur plusieurs vices de conformation des os, par G. Breschet. .................................................. 91
- De Fibres muscularis forma et structure, auctor H. R. Ficinus. (Extrait). .................................................................................. 137
- Aperçu descriptif de l'organe auditif du Marsouin, par G. Breschet. .................................................................................. 221
- Recherches anatomicques sur la manière dont l'épiderme se comporte avec les poils et les ongles, par M. Florenes. .................................................................................. 343
- Observations sur l'étude de l'histoire naturelle de l'homme, par le même. Observations sur un fœtus humain à trois têtes, par MM. Reina et Galvagny. .................................................................................. 349
- Anatomie microscopique, par M. Mandel. (Extrait). ..................................................................................

ZOOLOGIE. — ANIMAUX VERTÉBRÉS.

- Recherches sur l'ancienneté des Mammifères insectivores à la surface de la terre; précédées de l'histoire de la science à ce sujet, des principes de leur classification et de leur distribution géographique actuelle, par M. de Blainville (Extrait) .................................................................................. 118
- Notice sur les Rongeurs épineux, désignés par les auteurs sous les noms d'Echimys, Loncharès, Heteromys et Nelomys, par M. Isidore Geoffroy Saint-Hilaire .................................................................................. 122
- Notice sur un nouveau genre de Pachyderme fossile, nommé Oplotherium, par MM. Delaizer et de Parieu .................................................................................. 335

MOLLUSQUES.

- Mémoire sur les Goniatites, qui se trouvent dans les terrains de transition du Rhin, par M. Beyrich. .................................................................................. 65
- Sur un organe énigmatique propre à quelques Bivalves, par M. Siebold. .................................................................................. 319
- Note sur le développement de l'embryon des Lymnées, par M. Pouchet. (Extrait) .................................................................................. 63
ANIMAUX ARTICULÉS.

Mémoire sur la distribution géographique des Crustacés, par M. Milne Edwards. ........................................ 29
Lettre sur les Crustacés colorés en rouge, qu'on rencontre dans les marais salants, par M. Payen. .................................. 315
Recherches pour servir à l'histoire de la circulation du sang chez les Annelides, par M. Milne Edwards. ................. 193
Mémoire sur un Ver parasite, constituant un nouveau genre voisin des Rotifères, sur le Tardigrade et sur les Systolides ou Rotateurs en général, par M. Dujardin. .............. 7
Observations sur les Taenia et sur les mouvements de leur embryon dans l'œuf, par M. F. Dujardin. ........................................ 29
Notices of Irish Entozoæ. — Notices sur les Entozoaires, observés en Irlande, par M. J. L. Drummond. (Extrait). ......................... 128

ZOOPTYES.

Observations sur les Eponges et en particulier sur la Spongille ou Eponge d'eau douce, par F. Dujardin. ....................... 5
Sur le Volvox vegetans de Müller (Anthéphysea Bory), par M. F. Dujardin. ......................................................... 13
Sur les Monades à filament multiple, par M. F. Dujardin. ............. 17
Sur les zoospermes de la Salamandre aquatique, par M. F. Dujardin. 21
Observations sur une nouvelle espèce de Floscularia, par M. Peltier. 41
Mémoire sur l'organisation des Infusorires, par M. F. Dujardin. .......... 230
Observations sur la nature et le mode de croissance des Polypiers, par
M. Milne Edwards. .......................................................... 321 et 380

MÉLANGES.

Compte-rendu de actes de la Société des Sciences naturelles de Bade. .... 190
Traité de physiologie comparée, par M. Dugès. (Annonce.) ................ 374
Partie zoologique du voyage du Beagle, par MM. Darwin, Waterhouse et Gould. (Annonce.) ................................. 379
Histoire naturelle des Orthoptères, par M. Serville. (Annonce.) ......... 380
<table>
<thead>
<tr>
<th>Auteur</th>
<th>Titre</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blainville</td>
<td>Recherches sur l'ancienneté des Mammifères insectivores à la surface de la terre; précédées de l'histoire de la science à ce sujet, des principes de leur classification et de leur distribution géographique actuelle.</td>
<td>118</td>
</tr>
<tr>
<td>Breschet</td>
<td>Recherches sur différentes pièces du squelette des animaux vertébrés, etc.</td>
<td>91</td>
</tr>
<tr>
<td>Beyrich</td>
<td>Mémoires sur les Gonimatites, qui se trouvent dans les terrains de transition du Rhin.</td>
<td>65</td>
</tr>
<tr>
<td>Darwin</td>
<td>Zoologie du voyage du Beagle. (Annonce.)</td>
<td>379</td>
</tr>
<tr>
<td>Delaizer et de Parieu</td>
<td>Notice sur un nouveau genre de Pachyderme fossile, nommé Oploterium.</td>
<td>335</td>
</tr>
<tr>
<td>Dujardin</td>
<td>Observations sur l'éponge de Müller (Autophyza Bory).</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Sur des Monades à filament multiple.</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Sur les Zoospermes de la Salamandre aquatique.</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Mémoire sur l'organisation des Infusaires.</td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>Mémoire sur un Ver parasite, constituant un genre nouveau, voisin des Rotifères, sur le Tardigrade et les Systolides ou Rotateurs en général.</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Observations sur les Taniâmes et sur les mouvements de leur embryon dans l'œuf.</td>
<td>29</td>
</tr>
<tr>
<td>Drummond</td>
<td>Notice sur les Entozoaïres observés en Irlande. (Extrait.)</td>
<td>128</td>
</tr>
<tr>
<td>Dugès</td>
<td>Traité de physiologie comparée. (Annonce.)</td>
<td>374</td>
</tr>
<tr>
<td>Edwards (Milne)</td>
<td>Mémoire sur la distribution géographique des Crustacés.</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Recherches pour servir à l'histoire de la circulation du sang chez les Annelides.</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Observations sur la nature et le mode de croissance des Polypiers.</td>
<td>321</td>
</tr>
<tr>
<td>Ficinus</td>
<td>De Fibre musculaire, formé et structuré. (Extrait.)</td>
<td>17</td>
</tr>
<tr>
<td>Fleurès</td>
<td>Nouvelles observations sur le parallèle des extrémités dans l'homme et les quadrupèdes.</td>
<td>35</td>
</tr>
<tr>
<td>Ficinus</td>
<td>— Recherches anatomiques sur la manière dont l'épiderme se couvre avec les poils et les ongles.</td>
<td>343</td>
</tr>
<tr>
<td>Galvagny et Reina</td>
<td>Observations sur l'étude de l'histoire naturelle de l'homme.</td>
<td>349</td>
</tr>
<tr>
<td>Geoffroy Saint-Hilaire (Isidore)</td>
<td>Notice sur les Ronseurs épineux, désignés sous les noms d'Echinmys, Lonchères, Heteromys et Nebomyx. (Extrait)</td>
<td>122</td>
</tr>
<tr>
<td>Gould</td>
<td>Oiseaux du voyage du Beagle. (Annonce.)</td>
<td>379</td>
</tr>
<tr>
<td>Mandel</td>
<td>Anatomie microscopique, (Extrait).</td>
<td></td>
</tr>
<tr>
<td>Macrand</td>
<td>Recherches sur la présence de l'urée dans le saug, etc.</td>
<td>46</td>
</tr>
<tr>
<td>Payen</td>
<td>Lettre sur les Crustacés colorés en rouge, qu'on rencontre dans les marais salais.</td>
<td>315</td>
</tr>
<tr>
<td>Parieu</td>
<td>Rejoignez Delaizer.</td>
<td></td>
</tr>
<tr>
<td>Porcher</td>
<td>Notice sur le développement de l'embryon des Lymnées. (Extrait).</td>
<td>63</td>
</tr>
<tr>
<td>Reina</td>
<td>voyez Galvagny.</td>
<td></td>
</tr>
<tr>
<td>Serville</td>
<td>Histoire des Orthoptères. (Annonce.)</td>
<td></td>
</tr>
<tr>
<td>Siéadu</td>
<td>Sur un organe énigmatique propre à quelques Bivalves. (Extrait).</td>
<td>319</td>
</tr>
<tr>
<td>Waterhouse</td>
<td>Mammifères du voyage du Beagle. (Annonce.)</td>
<td>379</td>
</tr>
</tbody>
</table>
# TABLE DES PLANCHES

RELATIVES AUX MÉMOIRES CONTENUS DANS CE VOLUME.

<table>
<thead>
<tr>
<th>Planche</th>
<th>Contenu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eponges, Infusoirs, Zoospermes, etc.</td>
</tr>
<tr>
<td>2</td>
<td>Albertia et Tardigrade</td>
</tr>
<tr>
<td>3</td>
<td>Parallèle des extrémités</td>
</tr>
<tr>
<td>4</td>
<td>Flosculaire</td>
</tr>
<tr>
<td>5</td>
<td>Oreille du Marsouin</td>
</tr>
<tr>
<td>6</td>
<td>Goniatites</td>
</tr>
<tr>
<td>7</td>
<td>A. Goniatites. B. Monstre tricéphale</td>
</tr>
<tr>
<td>8</td>
<td>Os sus-sternaux</td>
</tr>
<tr>
<td>9</td>
<td>Oplothérium</td>
</tr>
<tr>
<td>10</td>
<td>Appareil circulatoire des Annelides</td>
</tr>
<tr>
<td>11, 12</td>
<td>Infusoirs</td>
</tr>
<tr>
<td>13, 14</td>
<td>Infusoirs</td>
</tr>
</tbody>
</table>

FIN DU DIXIÈME VOLUME.
Eponge, Infusoires, Zoospores et Œufs de Tawna
Alberta et Tardigrade
Phacellaure
A. Coniátes.

B. Monstre tricéphale.
Du squelette des animaux vertébrés

fig 1
fig 2
fig 3
fig 4
fig 5
fig 6
fig 7
fig 8
fig 9
fig 10
fig 11
fig 12

ON SES STÉRÉAUX
Appareil circulatoire des Annélides
Appareil circulatoire des Annelides